一次救命処置

BLS: Basic Life Support

日本蘇生協議会(JRC)蘇生ガイドライン 2025

一次救命処置 (BLS) 作業部会員 (五十音順)

石川 雅巳 呉共済病院麻酔·救急集中治療部

金子 洋 日本赤十字社愛知医療センター名古屋第一病院救急部

岸本 直隆 新潟大学大学院医歯学総合研究科歯科麻酔学分野

喜熨斗 智也 国士舘大学体育学部スポーツ医科学科

問田 千晶 信州大学医学部救急集中治療医学教室

仲村 佳彦 福岡大学医学部救命救急医学講座

名知 ひかる 朝日大学病院麻酔科歯科麻酔科朝日大学保健医療学部救急救命学科

野呂 美香 やよい在宅クリニック、やよい訪問看護ステーション

深野 賢太朗 自治医科大学附属さいたま医療センター麻酔科・集中治療部

横江 正道 日本赤十字社医療事業推進本部医療の質・研修部

共同座長 (五十音順)

野田 英一郎 独立行政法人国立病院機構九州医療センター救命救急センター/救急科

若松 弘也 山口県立総合医療センター麻酔科

担当編集委員 (五十音順)

西山 知佳 京都大学大学院医学研究科人間健康科学系専攻

先端中核看護科学講座クリティカルケア看護学分野

乗井 達守 ニューメキシコ大学医学部救急部

顧問

畑中 哲生 健和会大手町病院、救急救命九州研修所

目次

2

1	はじ	めに	4
	1.	BLS とは	4
	2.	成人 BLS で取り扱ったクリニカルクエスチョン(CQ)	4
	3.	BLS の重要なポイント	6
	4.	略語	7
2	市民	:用 BLS のアルゴリズム (図 1)	8
	1.	周囲の安全確認 ボックス 1	9
	2.	反応の確認 ボックス 2	
	3.	119 番通報 ボックス 3	
	4.	呼吸の確認と心停止の判断 ボックス 4	
	5.	胸骨圧迫 ボックス 5	
	6.	胸骨圧迫と人工呼吸 ボックス 6	
	7.	AED ボックス 7	11
	8.	BLS の継続 ボックス 8	
3	医療	用の BLS アルゴリズム(図 2)1	3
	1.	安全の確認 ボックス 1	
	2.	反応の確認 ボックス 2	
	3.	緊急通報 ボックス 3	
	4.	心停止の判断 ボックス 4	
	5.	胸骨圧迫と人工呼吸 ボックス 5	
	6.	AED/除細動器装着 ボックス 6	
	7.	ECG 解析・評価 ボックス 7	
	8.	CPR の継続 ボックス 8	
	0.	Sin OJ WE nyl ファンス O · · · · · · · · · · · · · · · · · ·	
= 4	アル	·ゴリズムの科学的背景1	6
	1.	119 番通報と心停止の判断	
	2.	CPR の開始と胸骨圧迫	
	3.	気道確保と人工呼吸	
	4.	CPR 中の胸骨圧迫と人工呼吸	
	4 . 5.	フィードバック	
	5. 6.	リズムチェック	
	0. 7.		49 51
	7. 8.	ACD ACD 心停止していない傷病者に胸骨圧迫を行うことによる偶発的な傷害(FA SysRemains) SysRemains	
	Ο.	2025)	
	9.	肥満患者に対する CPR (ScopRev 2025)	

	10.	個人防護具	59
= 5	異物	Jによる気道閉塞の解除	61
	1.	異物による気道閉塞への対応手順	61
	2.	対応手順の科学的背景	62
= 6	溺水	Kによる心停止	63
	1.	海や川などにおける溺水による心停止への対応手順	63
	2.	対応手順の科学的背景	65
- 7	202	5 年未評価のトピック	77

一次救命処置(BLS)

■1 はじめに

1. BLS とは

突然に発生した心停止に対して、呼吸と循環をサポートするために、まず行う救命処置を一次救命処置(basic life support: BLS)という。BLS で行うべき処置の多くは特別な器具を必要としない。医療従事者はもちろんのこと、医療従事者以外の市民にも行うことができ、より高度な救命処置である二次救命処置(advanced life support: ALS)への橋渡しを担う重要な救命処置でもある。

BLS の骨格となるのは胸骨圧迫と人工呼吸であり、この組み合わせを心肺蘇生(cardiopulmonary resuscitation: CPR)と呼ぶ.心肺蘇生に加え、必要に応じて自動体外式除細動器(automated external defibrillator: AED)を用いて電気ショックを行うこともBLS の重要な要素で、近年では公共の場所に設置された AED を用いて心停止の現場に居合わせた市民が行う電気ショック(public access defibrillation: PAD)によって心停止から社会復帰に至った症例の数も増加傾向にある.これらの要素が迅速・円滑に組み合わされることで、BLS は心停止傷病者への対応において大きな役割を果たす.

従来の JRC 蘇生ガイドラインでは、本章「一次救命処置 (BLS)」において、主に市民が成人や小児に対して行う BLS を取り扱い、医療従事者が行う BLS に関しては第2章「成人の二次救命処置」のなかで解説してきた。しかし、JRC 蘇生ガイドライン 2025 では、CoSTR における BLS や ALS の領域区分に合致させる意味も含めて、医療従事者が成人に対して行う BLS についても本章に含めた。(ただし、医療従事者が小児を対象として行う BLS については、第3章「小児の蘇生」で取り扱う)。また、本章では特殊な状況として、溺水による心停止、および心停止に至る可能性の高い病態として異物による気道閉塞(foreign body airway obstruction: FBAO)に対する緊急対応についても述べる。

2. 成人 BLS で取り扱ったクリニカルクエスチョン (CQ)

CoSTR2021 の出版以降, ILCOR は以下の CQ に関して新たなレビューを行った.

早期のアクセスと心停止の予防: 救急出動指令と通信指令員による口頭指導

- 通信指令員の支援による心停止の認識 (BLS 2102: SysRev) *B
- ・ 通信指令員による CPR の口頭指導の工夫 (BLS 2113 : SysRev) *■
- ・通信指令員の口頭指導による胸骨圧迫のみの CPR (BLS 2112 : SysRev) *■
- ・ 映像を活用した口頭指導 (BLS2104 : SysRev) *B

- 通信指令員の支援による AED の取得と使用 (BLS 2120: ScopRev) *E
- 公共の場所での AED の保管方法 (BLS 2123: ScopRev) *B
- 極小携帯型 AED の有効性 (BLS 2603 : ScopRev) *B
- ドローンによる AED の搬送 (BLS 2122: ScopRev) *E

CPR の開始と胸骨圧迫

- ・ CPR の開始手順 (C-A-B vs A-B-C) (BLS 2201: SysRev)
- ・ 硬い表面上での CPR (BLS 2510: SysRev)
- 胸骨圧迫の部位 (BLS 2502: SysRev)
- ・ 胸骨圧迫の深さ (BLS 343: EvUp)
- 胸骨圧迫のテンポ (BLS 366: EvUp)
- ・ 胸骨圧迫の解除 (BLS 367: EvUp)
- 中断を最小限にした胸骨圧迫(BLS 2504: SysRev)
- 個人防護具を着用した CPR (BLS 2003: SysRev)
- ・ヘッドアップ CPR (BLS 2503 : SysRev)

気道確保と人工呼吸

· 受動的換気法 (BLS 2403: SysRev)

CPR中の胸骨圧迫と人工呼吸

- ・ 通信指令員による口頭指導がない場合の胸骨圧迫のみの CPR (BLS 2100: SysRev)
- 連続した胸骨圧迫によるCPRと人工呼吸を伴うCPR(院内)(BLS 2222:SysRev)
- 胸骨圧迫:人工呼吸比(救急隊員)(BLS 2202: SysRev)
- ・ 連続した胸骨圧迫による CPR と人工呼吸を伴う CPR (救急隊員) (BLS 2221: SysRev)
- CPR の質のためのフィードバック (BLS 2511: SysRev)
- 換気のリアルタイムフィードバック装置(BLS 2403: ScopRev)

リズムチェック

- CPR サイクルの時間 (2分 vs その他の時間) (BLS 2212: SysRev)
- ・ BLS 中の循環の確認 (BLS 340: EvUp)

AED

- ・ 電気ショック施行前の CPR (BLS363: EvUp)
- 成人におけるパドル/電極パッドのサイズおよび位置 (BLS 2601: SysRev)
- ・ 電極パッド貼付および電気ショック前のブラジャーの取り外し (BLS 2604: Scop Rev)

特殊な状況

- ・ 搬送中の CPR (BLS 2715: SysRev) *B
- ・ 肥満患者への CPR (BLS 2720: ScopRev)

異物による気道閉塞の解除

• 異物による気道閉塞の解除 (FA 7113: EvUp) *FA

溺水

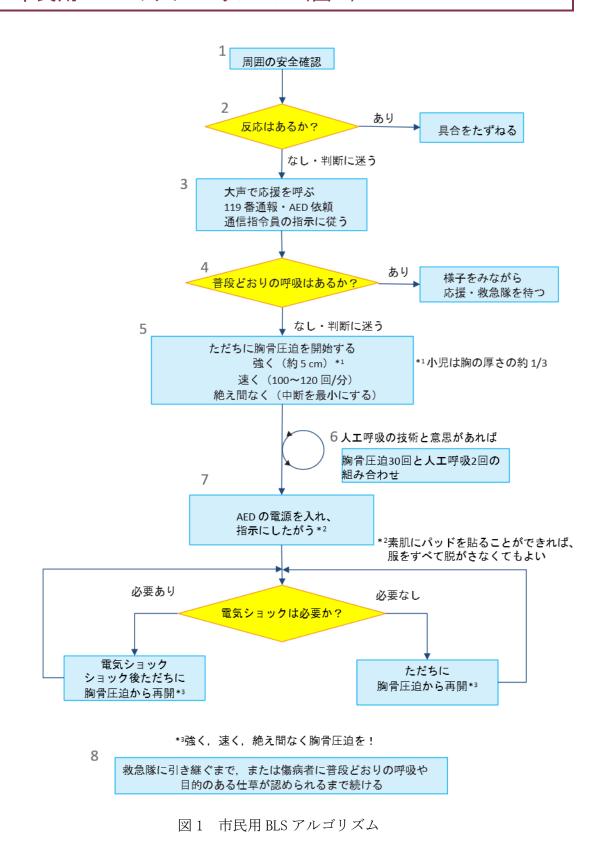
- 水上で行う溺水時の蘇生 (BLS 2704: SysRev)
- CPR 開始手順(AED ファースト vs CPR ファースト)(BLS 2707: SysRev)
- ・ 溺水時の蘇生手順 (ABC vs CAB) (BLS 2702: SysRev)
- 胸骨圧迫のみの CPR (BLS 2703: SysRev)
- ・ 溺水後の心停止における気道確保器具, 換気器具 (BLS 2706: SysRev)
- ・ 溺水による心停止に対する病院到着前の酸素投与 (BLS 2706: SysRev)
- ・ 溺水傷病者への PAD プログラムの適用 (BLS 2709: SysRev)

CPR による意図しない傷害

- 心停止していない傷病者に胸骨圧迫を行うことによる意図しない傷害(FA 2025: SysRev)*FA
- * E JRC 蘇生ガイドライン 2025 では BLS から EIT に移動して EIT で取り扱った
- * FA JRC 蘇生ガイドライン 2025 では FA から BLS に移動して BLS で取り扱った

3. BLS の重要なポイント

- 傷病者に反応がない場合,あるいは反応の有無についての判断に迷う場合,救助者は119 番通報をして通信指令員の指示を仰ぐ.
- 傷病者に反応がみられず、普段どおりの呼吸がない、あるいは呼吸状態の判断に迷う場合には、胸骨圧迫による意図しない傷害を恐れることなく、ただちに胸骨圧迫から CPR を開始する.
- 質の高い胸骨圧迫を行うことが重要である. 胸骨圧迫の部位は胸骨の下半分とし,深さは胸が約5cm 沈むように圧迫するが,6cm を超えないようにする. 1 分間あたり100~120回のテンポで胸骨圧迫を行い,圧迫解除時には胸を完全に元の位置に戻し,力がかからないようにする. 胸骨圧迫の中断を最小にする.
- トレーニングを受けていない救助者は胸骨圧迫のみの CPR を行う.
- 救助者が人工呼吸のトレーニングを受けており、それを行う技術と意思がある場合は、 胸骨圧迫と人工呼吸を30:2の比で行う.特に小児の心停止では、人工呼吸を組み合わ せた CPR を行うことが望ましい.
- 人工呼吸を 2 回行うための胸骨圧迫の中断は 10 秒以内とし、胸骨圧迫比率 (chest compression fraction: CCF, CPR 時間のうち, 実際に胸骨圧迫を行っている時間の割合) をできるだけ大きく、最低でも 60%とする.
- AED が到着したら、速やかに起動し、その後は AED の音声・視覚メッセージに従って電極パッドを貼付する、電気ショックを行った後はただちに胸骨圧迫から再開する.
- 電極パッドを直接素肌に貼るために、必要なら服をずらす、または脱がす. ブラジャー


は完全に外す必要はない.

• CPR と AED の使用は、救急隊など、ALS を行うことができる救助者に引き継ぐか、明らかに自己心拍再開(ROSC)と判断できる反応(普段どおりの呼吸や目的のある仕草)が出現するまで繰り返し続ける.

4. 略語

FBAO: foreign body airway obstruction (異物による気道閉塞)

■2 市民用 BLS のアルゴリズム (図 1)

「JRC 蘇生ガイドライン 2025 オンライン版」©一般社団法人 日本蘇生協議会

1. 周囲の安全確認 ボックス 1

周囲の安全を確認する.安全を脅かす具体的な状況としては、車の往来がある、室内に煙が立ち込めているなどがあり、それぞれの状況に応じて安全を確保するようにする.安全が確保されていないと判断した場合には、傷病者には接触せず、消防や警察等の到着を待つ. 救助者自身の安全を確保して要救助者を増やさないことは、傷病者を助けることよりも優先される.

2. 反応の確認 ボックス 2

傷病者の肩を軽くたたきながら大声で呼びかける. 何らかの応答や仕草がなければ「反応なし」とみなす. 呼びかけても反応がない場合, または傷病者が痙攣中であるなど, 反応の有無についての判断に迷う場合には, 心停止の可能性があるので, 次のステップ, すなわち 119 番 通報と AED の手配を依頼する. 応答があり会話が可能であれば, どこか具合が悪いところがあるかを傷病者にたずねる. トレーニングを受けている救助者の場合は, 傷病者の訴えによってはファーストエイドを行うこともある.

3. 119番通報 ボックス 3

大声で叫んで周囲の注意を喚起し、周囲の者に 119 番通報と AED の手配(近くにある場合)を依頼する。周囲に人がいなければ、自分で 119 番通報を行い、近くに AED があることがわかっていれば持ってくる。なお、反応の有無について迷った場合も 119 番に通報し通信指令員(119 番通報に対応する消防機関の窓口)の指示に従う。

119 番通報を受けた通信指令員は、救助者との通話内容から心停止を疑った時点でただちに救急車の手配を行う. 119 番通報をした救助者は、通信指令員から心停止の判断と CPR について口頭指導を受けることができる. この際、電話のスピーカーを利用するなど、ハンズフリーオプションを利用すれば、通信指令員の口頭指導を受けながら CPR を行うことができる.

4. 呼吸の確認と心停止の判断 ボックス 4

傷病者に反応がない場合には、胸と腹部の動きに注目して呼吸を確認する. 呼吸がない、または呼吸はあるが普段どおりではない場合、あるいはその判断に迷う場合は心停止、すなわち CPR の適応と判断し、ただちに胸骨圧迫を開始する. 呼吸の確認は 10 秒以内に行う. 10 秒近く観察しても呼吸の状態がわからない、すなわち「判断に迷う」ときは CPR の適応である. 突然の心停止の直後には死戦期呼吸、すなわちしゃくりあげるような不規則な呼吸が時折みられる. これを市民救助者は「呼吸をしている」と誤って判断して見逃すことがあるが、このような普段どおりでない死戦期呼吸を認めた場合も CPR の適応である.

心停止を判断するための手法としての脈拍の触知は市民にとって容易ではなく,その診断 精度も低い.そのため,市民救助者が頸動脈の拍動を確認する必要はない.

傷病者に普段どおりの呼吸を認める時は,傷病者の呼吸状態の観察を続けつつ,救急隊の 到着を待つ.可能な場合は傷病者を側臥位回復体位としてもよい.救急隊を待っている間に 呼吸が認められなくなったり、普段どおりでない呼吸に変化したりした場合には、心停止とみなしてただちに CPR を開始する.

5. 胸骨圧迫 ボックス 5

全ての救助者は、トレーニングされていてもそうでなくても、心停止の傷病者に胸骨圧迫を実施すべきである. 質の高い胸骨圧迫を行うことが重要である. 心停止ではない場合でも、胸骨圧迫によって傷病者に傷害が発生するリスクは低く、救助者は恐れずに胸骨圧迫を開始すべきである.

1) CPR の開始手順

CPR は胸骨圧迫から開始する. 傷病者を仰臥位に寝かせて, 救助者は傷病者の胸の横にひざまずく.

2) 胸骨圧迫の部位

胸骨圧迫の部位は胸骨の下半分とする.

3) 胸骨圧迫の深さ・テンポ・解除

深さは胸が約5cm 沈むように圧迫するが、6cm を超えないようにする。圧迫のテンポは1分 間あたり $100\sim120$ 回とする。なお、小児における圧迫の深さは胸郭前後径(胸の厚さ)の約1/3 とする。

毎回の胸骨圧迫の後には、胸を完全に元の位置に戻すために、圧迫と圧迫の間に胸壁に力がかからないようにする. ただし、そのために胸骨圧迫が浅くならないよう注意する.

4) 胸骨圧迫の質の確認

複数の救助者がいる場合は、救助者が互いに注意しあって、胸骨圧迫の部位や深さ、テンポが適切に維持されていることを確認する.

5) CPR 中の胸骨圧迫の中断

CPR 中の胸骨圧迫の中断は最小にすべきである. 人工呼吸や ECG 解析や電気ショック (後述) を行うときに胸骨圧迫を中断するのはやむを得ないが, これらの場合でも胸骨圧迫の中断は最小にすべきである.

6) 救助者の交代

救助者の疲労による胸骨圧迫の質を低下させないために、救助者が複数いる場合には、1~2分ごとを目安に胸骨圧迫の役割を交代する. 交代に要する時間は最小にする.

6. 胸骨圧迫と人工呼吸 ボックス 6

1) 胸骨圧迫のみの CPR

トレーニングを受けていない市民救助者は、胸骨圧迫のみの CPR を行う. トレーニングを受けたことがある市民救助者であっても、気道を確保し人工呼吸をする技術または意思がない場合には、胸骨圧迫のみの CPR を行う.

2) 気道確保と人工呼吸

救助者が人工呼吸のトレーニングを受けており、それを行う技術と意思がある場合は、胸骨圧迫と人工呼吸を 30:2 の比で繰り返し行う. 特に小児の心停止では、人工呼吸を組み合わせた CPR を行うことが望ましい.

人工呼吸を行う際には気道確保を行う必要がある. 気道確保は頭部後屈あご先挙上法で行う.

1回換気量の目安は人工呼吸によって傷病者の胸の上がりを確認できる程度とする. CPR 中の過大な換気量は避ける. 1回の送気(呼気吹き込み)は約1秒かけて行う.

3) 個人防護具

口対口人工呼吸による感染の危険性は低いので,個人防護具なしで人工呼吸を実施しても よいが,可能であれば個人防護具の使用を考慮する.

7. AED ボックス 7

AED が到着したら、すみやかに電源を入れる. AED には蓋を開けると自動的に電源が入るタイプと電源ボタンを押す必要のあるタイプとがある. 後者では最初に電源ボタンを押す.

1) パッドの貼付

右前胸部と左側胸部に小学生~成人用の電極パッドを貼付する.適切な位置の素肌にパッドを貼ることができれば服をすべて脱がさなくてもよい.未就学(小学校入学前)の小児に対しては、未就学児用モードに切り替える(未就学児用キー差し込み、またはスイッチ操作による)、または未就学児用パッドを用いる.未就学児用パッドがなければ、小学生~成人用パッドを使用する.成人に対して未就学児用モードや未就学児用パッドを用いてはならない.

2) 電気ショックと胸骨圧迫の再開

AED による ECG 解析が開始されたら、音声メッセージに従って傷病者に触れないようにする. ECG 解析後ショックが必要との音声メッセージがあれば、ショックボタンを押し電気ショックを行う. ショックボタンを押さなくても自動的に電気ショックを行う機種もあり、その際も AED の音声メッセージに従う. 電気ショック後およびショックが不要の音声メッセージ後はただちに胸骨圧迫から CPR を再開する.

8. BLS の継続 ボックス 8

BLS は救急隊や医療従事者などに引き継ぐまで続ける. 明らかに ROSC と判断できる反応(普段どおりの呼吸や目的のある仕草)が出現した場合には、十分な循環が回復したと判断して CPR をいったん中止してよい. ただし、AED を装着している場合、電源を切らず、電極パッド は貼付したままにしておく.

■3 医療用の BLS アルゴリズム (図 2)

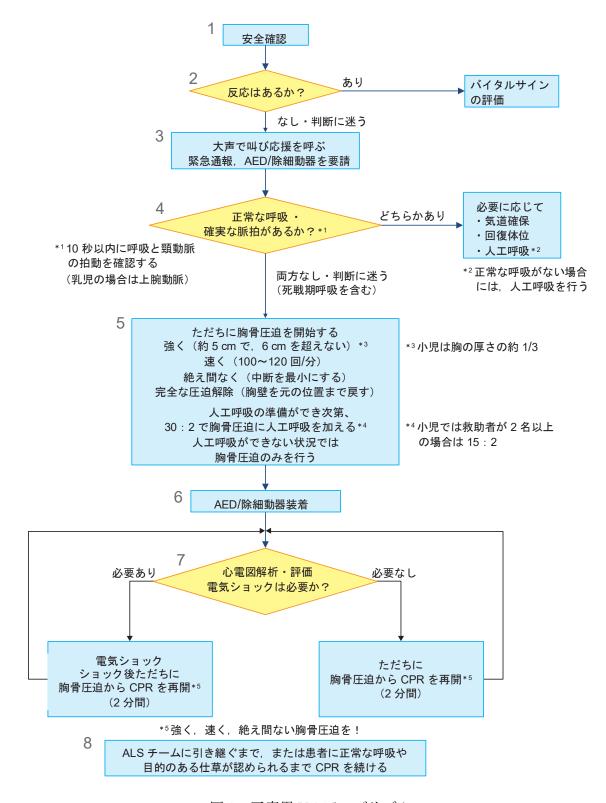


図2 医療用BLSアルゴリズム

日常的に蘇生に従事する者が行う ALS に先駆けて、心停止患者の発見者などによって BLS が開始される.このような状況において、発見者となった医療従事者は、市民を対象として作成された市民用 BLS アルゴリズムではなく、医療用 BLS アルゴリズム(図 2)を使用する.また小児に関する医療用 BLS アルゴリズムの説明は PLS の項を参照のこと.

医療用 BLS アルゴリズムには、脈拍の確認やバッグバルブマスク (BVM) による人工呼吸、手動式除細動器による電気ショックなど、習熟するのにトレーニングを要する処置も含まれている. しかし、良質な蘇生は統制されたチームとして取り組むべき行為であり、全ての医療従事者は、自分自身にとっては習熟していない処置であっても、それらを含めた処置を含む全体の流れを熟知しておくことが必要である. 医療従事者における医療用 BLS アルゴリズムを以下に説明する.

1. 安全の確認 ボックス 1

救助者および患者の安全を守るために、まず周囲の安全を確認し、BLS が行える状況か否かを確認する. 救助者の安全が確保されていない場合は、患者には接触せず応援を待つ.

2. 反応の確認 ボックス 2

患者が倒れるところを目撃した、あるいは倒れている患者を発見した救助者は、患者の顔色、体動、呼吸等の異常に注意しながら接近し、患者に接触したら、まずは反応を確認する. 呼びかけに反応がない場合、または患者が痙攣中であるなど、反応があるかどうかの判断に迷う場合は心停止を疑う. 呼びかけに反応があった場合はバイタルサインの評価を可能な範囲で行う.

3. 緊急通報 ボックス 3

心停止を疑ったら、応援を求め、緊急通報と AED もしくは手動式除細動器を要請する. 自分自身で緊急通報を行うことも容認される. 自施設の緊急通報の手段を覚えておくことが重要である.

4. 心停止の判断 ボックス 4

14

心停止の判断は、反応および呼吸・脈拍の状態を総合的に評価して行う. 患者に反応がない、または判断に迷う場合は、まず胸と腹部の動きに注目して呼吸を確認し、頸動脈の拍動を触知して脈拍の有無を評価する. 気道確保は人工呼吸には必要な手技であるが、正常な呼吸の有無を判断するこの段階では気道確保は必ずしも必要ではなく、胸と腹部の動きに注視し迅速に評価する.

脈拍の評価は頸動脈で行う.脈拍の有無による心停止の判断は医療従事者が行った場合でも確実ではない.しかし,脈拍を触れることに確信が持てる場合には心停止ではないと判断できるので,呼吸が正常ではない場合に不必要な胸骨圧迫を行うことを回避できる.

①正常な呼吸がなく,脈拍も触知できない場合,②死戦期呼吸と判断した場合,③正常な呼吸かどうかの判断に迷う場合,あるいは、④脈拍があることに確信が持てない場合には、

ただちに CPR を開始する. 呼吸と脈拍の評価にかける時間は 10 秒以内に留め, 10 秒経っても判断に迷う場合は心停止とみなしてただちに CPR を開始する. 判断に時間をかけて CPR の開始を遅らせてはならない. そのために平時から BLS のトレーニングを行っておくことが重要である.

正常な呼吸があり、脈拍を確実に触知できる場合には、舌根沈下や嘔吐による将来的な気道閉塞の可能性を想定して気道確保したり、回復体位にしたりして、ALS チームの到着を待つ。

正常な呼吸はないが確実に脈拍を認める場合,例えば上気道の狭窄・閉塞を疑わせるシーソー呼吸が認められる時には,頭部後屈あご先挙上や下顎挙上による気道確保が有用なことがある.正常な呼吸はないが脈拍を触れることに確信が持てる場合には気道確保を行い、必要に応じて1分間に約10回(6秒に1回)を目途に人工呼吸を行いながらALSチームを待つ.この間,少なくとも2分ごとに脈拍確認を行い,心停止となった場合に胸骨圧迫の開始が遅れないようにする.

5. 胸骨圧迫と人工呼吸 ボックス 5

CPR は胸骨圧迫から開始する。胸骨圧迫は、胸骨の下半分を約5cm(ただし、6cmを超えない)の深さで、1分間あたり $100\sim120$ 回のテンポで、中断を最小にして行う。毎回の胸骨圧迫のあとで胸壁が完全に元の位置に戻るように圧迫を解除する。ただし、完全な圧迫解除のために胸骨圧迫が浅くならないよう注意する。なお、小児における圧迫の深さは胸の厚さの約1/3とする。

可能ならば CPR は硬い表面で行う. 病院内のベッド上で CPR を行う場合, マットレスを硬くできる CPR モードがある場合にはそれを使用する. BVM など人工呼吸器具の準備ができるまでは, 胸骨圧迫のみの CPR を継続する.

人工呼吸器具の準備ができ次第,人工呼吸を開始する.この場合,胸骨圧迫と人工呼吸は30:2の比で行う.

人工呼吸を実施する場合には気道確保が必要となる. 気道確保は頭部後屈あご先挙上法を用いるが,必要に応じて下顎挙上法を行う. 下顎挙上法のみで気道確保ができなければさらに頭部後屈を加える. CPR 中の人工呼吸は BVM を用いて,高流量の酸素を投与するのが望ましいが,酸素投与の有無にかかわらず,約1秒かけて胸が上がる程度の換気量で行う. 過大な換気量は胃膨満のリスクを高めるだけでなく,胸骨圧迫による心拍出量を減少させる原因となる. 複数の救助者が人工呼吸を担当する場合は,両手でマスクを保持することで顔面との密着がより確実になる. 救助者となる可能性のある者は,BVM を用いた人工呼吸に習熟しておくべきである.

病院や救急車内など日常業務として蘇生を行う場所では、必要時に迅速に人工呼吸が開始できるように BVM を準備しておく. 特に、窒息、溺水、気道閉塞、目撃がない心停止、遷延する心停止状態、あるいは小児の心停止では、早期に人工呼吸を開始することが重要である.

6. AED/除細動器装着 ボックス 6

AED や手動式除細動器が到着するまでは、医療従事者であっても脈拍をチェックすること

なく CPR を続け、到着次第すみやかに電極パッドを貼付またはパドルを装着する. いずれを 使用する場合でも、ECG 解析・評価を行う直前まで胸骨圧迫を継続する.

7. ECG 解析・評価 ボックス 7

AED では ECG が自動解析されるが、手動式除細動器では医師が ECG を確認して判断する必要がある. なお、AED モードに切り換えられるタイプの除細動器の場合は AED モードにすることによって ECG の自動解析が可能であり、蘇生に従事する機会が少ない医師にとって有用であり、医師以外の医療従事者にも使用可能である. 一方、医師が操作する場合は手動式モードにすることで、自動解析時間を節約することもできる.

1) 電気ショックが必要である場合

AED を用いる場合は音声メッセージに従って電気ショックを行う.

手動式除細動器を用いる場合、VF/無脈性 VT (pVT) であれば電気ショックを行う.手動式除細動器の充電中に胸骨圧迫を継続することは理にかなっている.電気ショックを 1 回実施したら、ただちに胸骨圧迫から CPR を再開し、2 分間行う.以後 2 分おきにリズムチェックと電気ショックを繰り返す.引き続いて実施される電気ショックで、エネルギー量を上げることが可能な機種であれば、使用している機種の推奨に従ってエネルギー量を上げて行う.

2) 電気ショックが必要でない場合

AED を用いる場合は音声メッセージに従ってただちに CPR を再開する.

手動式除細動器を用いる場合で、2 分ごとのリズムチェックで ROSC の可能性がある QRS 波形が認められる場合は頸動脈の脈拍を確認する. 脈拍を触知すれば ROSC 後のモニタリングと管理を開始する. 無脈性電気活動(pulseless electrical activity: PEA)や心静止であれば、ただちに胸骨圧迫から CPR を再開し 2 分間行う. 以後 2 分おきにリズムチェックを繰り返す.

8. CPR の継続 ボックス 8

CPR は、ALS チームに引き継ぐ、あるいは患者に正常な呼吸や目的のある仕草を認めるまで継続する.

■4 アルゴリズムの科学的背景

1. 119番通報と心停止の判断

1) 119 番通報

傷病者に反応がない場合、または傷病者が痙攣中など反応の有無についてその判断に迷う

場合には119番通報することを推奨する.

市民が反応のない傷病者を前にして、心停止か否かを正しく判断するのは容易ではない. 早期に 119 番通報することにより、心停止の判断や近くにある AED の所在に関して通信指令 員からの助言を受けることができるだけでなく、心停止と判断した場合に必要な CPR に関し ても口頭指導を受けることができる. また、この時点で 119 番通報することにより、救急隊 の出動・到着がより迅速になるという利点もある.

救助者が一人だけの場合には 119 番通報と CPR の両方を行う必要がある. このような状況 に際してどちらを優先させるべきかに関して, ILCOR は, 以下の CQ をたてて CoSTR2020 で SysRev を, CoSTR2023 で EvUp を行った.

119 番通報前の CPR(EvUp 2023)

CQ:バイスタンダーが1人だけで携帯電話を持っている場合に、反応がない 傷病者を発見した後に行う対応として、CPR 開始と119番通報のどちらを優 先すべきか?

- P:成人および小児の病院外心停止
- I:1分間のCPRを行った後に119番通報する(CPRファースト)
- C: バイスタンダーが1人だけで携帯電話を持っている場合に,まず119番通報する(コールファースト)
- 0:退院時・30日後の神経学的転帰,退院時・30日後生存,ROSC
- S: RCT と非無作為化の比較試験, 5 症例以上の症例集積研究を含めた. 論文化されていない研究(学会抄録, 臨床試験プロトコルなど), マネキンまたはシミュレーション研究, ナラティブレビュー, 1 次データに基づかない論説または意見, 動物実験および実験モデルを除外した
- T: 英語の抄録がある,あらゆる言語で出版された研究を対象とした. 文献検索は 2023 年 1 月まで

推奨と提案

バイスタンダーが 1 人だけで携帯電話を持っている場合は、119 番通報し、携帯電話のスピーカーまたは他のハンズフリーオプションを作動させてただちに CPR を開始し、必要に応じて通信指令員の口頭指導を受けることを推奨する(強い推奨、エビデンスの確実性:非常に低い、Grade 1D).

エビデンスのまとめ

CoSTR2023 において新しいエビデンスは見つからなかった. なおこのトピックの SysRev については JRC 蘇生ガイドライン 2020 を参照のこと.

2) 心停止の判断

心停止をすばやく判断することは迅速な CPR を開始するための重要な鍵である.心停止となった傷病者はまず反応がなくなり、まもなく呼吸が消失する.本来は脈拍の消失が心停止

の直接的な症候であるが、市民にとってその評価は容易ではない. 傷病者に反応がなく、普段どおりの呼吸がない場合、あるいはその判断に迷う場合に心停止と判断することは理にかなっている.

今後の課題

- ・ 市民による心停止の判断を助ける新しいテクノロジーはあるか.
- ・ 「普段どおりの呼吸」とは具体的には何か.
- ・ 心停止判断の精度を高めるために、どのような判断基準を取り入れるとよいか.
- ・ 心停止の判断までの所要時間と転帰に関連はあるか.
- ・ 心停止判断のための呼吸観察で気道確保を行うことが呼吸停止の判断にどのような影響を与えるか.

3) 心停止でない場合の対応

普段どおりの呼吸があっても反応がない傷病者の場合,市民救助者は呼吸の観察を継続しつつ,応援・救急隊の到着を待つ.反応がない傷病者では舌根沈下による気道閉塞の可能性があるので,可能な場合は傷病者を側臥位回復体位としてもよい(普段どおりの呼吸がある場合の回復体位については,第8章「ファーストエイド」を参照).普段どおりの呼吸がなくなった場合には,心停止とみなしてただちに胸骨圧迫を開始する.

2. CPR の開始と胸骨圧迫

1) CPR の開始

(1) CPR の開始手順(SysRev 2025)

レビューの実施理由

このトピックは、BLS および PLS タスクフォース合同で評価された. ILCOR の推奨と提案は 2020 年に更新されたのが最後である. 本トピックは 2020 年以降 EvUp のみが実施されていたため、優先的に評価された. 小児に関する CoSTR、推奨と提案、およびエビデンスから決断を導くための枠組み(EtD)は ILCOR ウェブサイトおよび PLS CoSTR で報告されている.

CQ: CPR は胸骨圧迫と人工呼吸のどちらから開始するか?

- P: あらゆる状況での成人と小児の心停止
- I:胸骨圧迫から開始する CPR (30:2)
- C:人工呼吸から開始する CPR (2:30)
- 0:■重大:退院時または30日後の神経学的転帰,退院時または30日後の生存,1年後の神経学的転帰,1年後の生存,生存入院,ROSC
 - ■重要:人工呼吸を開始するまでの時間,最初の胸骨圧迫を開始するまでの時間,最初のCPRサイクルを終えるまでの時間,換気回数,胸骨圧迫回数,CCF,分時換気量
- T: 文献検索は2024年6月18日まで

18

推奨と提案

心停止の成人に対しては、人工呼吸からではなく胸骨圧迫から CPR を開始することを提案する (弱い推奨、エビデンスの確実性:非常に低い Grade 2D).

優れた医療慣行に関する記述

わが国では、従来の JRC 蘇生ガイドラインと同様に、小児に対しても胸骨圧迫から開始することを原則とする (優れた医療慣行に関する記述).

なお, 溺水による心停止の場合については「6 溺水による心停止 3) 溺水時の蘇生手順(C-A-B vs A-B-C)」を参照のこと.

エビデンスの評価に関する科学的コンセンサス

小児のマネキンシミュレーション研究が1件あった(出版後に訂正).以前のILCORのCoSTRで報告されたマネキンでのシミュレーション研究4件も確認された.この5件のうち3件はRCT(成人1件,小児2件),2件は成人の蘇生に関する観察研究であった.ヒト対象の研究は確認されなかった.すべてのアウトカムにおいてエビデンスの確実性は非常に低く,深刻なバイアスのリスクおよび非直接性によりグレードダウンされた.加えて異質性が高いため,メタアナリシスは実施できず、個別の研究の解釈は困難であった.

エビデンスから決断を導くための枠組み(EtD)

小児に関する EtD は、PLS を参照のこと.

成人に対する本推奨と提案を作成するにあたり、ILCOR の BLS タスクフォースは以下の現存するエビデンスの大部分(すべて確実性は非常に低い)を考慮した.

- ・ CPR を胸骨圧迫から開始することで、蘇生における重要な要素、すなわち最初の胸骨圧 迫の開始までの時間、最初の圧迫サイクルの完了までの時間、CCF などが改善される.
- ・成人の院外心停止における前後比較を行ったレジストリ研究からの非直接的エビデンスは、ABCから CABへのアプローチの変更が、市民による CPR の実施率の上昇および転帰の改善と関連していたことを示唆している。院内心停止に関する同様のデータでは、転帰に関して相反するエビデンスが示されている。
- ・成人に対するこの推奨を維持するにあたり、ILCOR の BLS タスクフォースは以下の要素 も検討した.
 - 成人に対する単一のトレーニングアプローチの利点
 - 有効な胸骨圧迫は冠灌流圧を累積的に増加させるが、圧迫を中断するとほぼゼロに低下するため、早期かつ有効な胸骨圧迫は冠灌流圧の確立と維持に不可欠である.
 - 最初の胸骨圧迫開始までの時間は、傷病者のよりよい転帰と関連している.
 - バイスタンダーは、シミュレーション CPR 中に有効な人工呼吸を提供できないこと が多い.
 - 口対口人工呼吸に対する市民の懸念により、気道確保および人工呼吸から CPR を開始すると、市民による CPR が行われない可能性がある.
 - ABC アプローチでは CPR における誤りが多くなること, CAB が市民に好まれること, そして学習および保持が容易であることが示されている.

- 口対口以外の方法で人工呼吸を実施するには、バッグマスクやポケットマスクなどの装備を取り出して準備する必要があるが、これらは複数の救助者がいる場合、胸骨圧迫と並行して実施可能である.

患者にとっての価値と JRC の見解

成人に関しては JRC として ILCOR の見解を支持する. 小児に関しては、ILCOR は人工呼吸でも胸骨圧迫でも、いずれの手順から開始してもよいとしている. しかしわが国では、成人のアルゴリズムとの整合性や現在のアルゴリズムの普及状況も考慮し、従来の JRC 蘇生ガイドラインと同様に、蘇生を実施する者が市民か医療従事者かを問わず、小児に対して胸骨圧迫から開始することを原則とする. 詳細は第3章「小児の蘇生」を参照のこと.

今後の課題

本課題を直接評価したヒトを対象とする研究は、いかなる状況においても存在しない.世界各国の蘇生に関する協議会等において CAB または ABC のアプローチが採用されている現状を踏まえると、異なる国や地域のレジストリの比較研究によって本課題に関するエビデンスが得られる可能性がある.

(2) 硬い表面での CPR (SysRev 2024)

レビューの実施理由

このトピックは2019年以来見直されていなかったため、BLS タスクフォースにより優先的に評価された. 前回行った SysRev 以降、タスクフォースは、CPR の質を改善するために患者をベッドから床に移す行為がCPR を遅らせる可能性につながることを懸念していたため、SysRev の更新が必要だと考えた.

CQ: 硬い表面での CPR は、マットレス上での CPR と比べて転帰を改善するか?

- P: あらゆる状況での成人と小児の心停止
- I:硬い表面(例: 背板,床,または空気を抜くことができるマットレスなどの特殊なマットレス)での CPR
- C:通常のマットレスまたはその他の柔らかい表面での CPR
- 0:■重大:退院時または30日後の神経学的転帰および生存
 - ■重要:生存入院, ROSC, および CPR の質(例:圧迫の深さ, 圧迫のテンポ, CCF)
- S: RCT および非無作為化研究 (非 RCT, 分割時系列解析, 前後比較研究, コホート研究) を対象とした. 未出版の研究 (学会抄録, 臨床試験のプロトコルなど) は除外した. マネキンを用いた無作為化研究や遺体を用いた研究は, 臨床研究が不十分な場合にのみ対象とした. 英語の抄録が入手可能な場合は, 本文の言語に関係なく対象とした
- T:検索期間は,2019年9月17日(前回のSysRevの検索日)~2024年2月5日まで

推奨と提案

可能ならば硬い表面で CPR を行うことを提案する (弱い推奨, エビデンスの確実性:非常

に低い Grade 2D).

背板を使用する効果のエビデンスの確実性が非常に低いので、現在背板を日常的に使用している場合はその使用を継続し、逆に未導入の場合は新たに導入する必要はない(弱い推奨、エビデンスの確実性:非常に低い Grade 2D).

優れた医療慣行に関する記述

院内心停止においてマットレスを硬くできる CPR モードのあるベッドでは CPR モードを 使用する(優れた医療慣行に関する記述).

エビデンスの評価に関する科学的コンセンサス

前回 SysRev の対象になったマネキンのシミュレーション RCT11 件に加え,小規模観察研究 1 件と追加マネキン RCT6 件があった.バイアスのリスクと深刻な非直接性により,エビデンスの全体的な確実性は「非常に低い」ないし「低い」と評価された.患者転帰を報告した研究はなかった.対象となった研究は,表面の硬さ別に,背板対病院用マットレス,床面対病院用マットレス,床面対での他の表面とグループ分けをして評価された.背板と病院用マットレスを比較した小規模の観察研究では,加速度計を1つだけ用いて測定を行っていたため,結果は信頼できないと考えられた.

エビデンスから決断を導くための枠組み(EtD)

マットレス上の患者に胸骨圧迫を行う場合,圧迫の力は胸郭のそのものだけではなく,患者の下にあるマットレスをも沈み込ませる.マットレスの沈み込みは,見かけ上の圧迫の深さの57%にも達することがあり,柔らかいマットレスではその割合がさらに大きくなる.マットレスの沈み込みが大きいと,有効な胸骨圧迫の深さが担保しにくくなる.ただし,胸骨圧迫を行う人がマットレスの沈み込みを考慮して胸骨圧迫を深くすれば,柔らかい表面上でも有効な胸骨圧迫を実施できることが報告されている.マットレスの沈み込みを考慮したCPRフィードバック装置(例えば,加速度計を単一ではなく2つ使用したり,圧迫の深さの目標を高めに設定するなど)は、マットレス上で胸骨圧迫を実施する際に、適切な胸骨圧迫の深さを確保するのに役立つ.

これらの推奨と提案を行うにあたり、ILCOR のBLS タスクフォースは質の高い胸骨圧迫の重要性、CPR 開始の遅れを最小限に抑えること、そして患者転帰などヒトを対象とした直接的なデータが不足していることを慎重に考慮した。マネキンを用いた研究の限界はあるが、現時点の研究結果では病院のマットレスの上で背板を使用しても、胸骨圧迫の深さはわずかに改善する程度で、臨床的には大きな意味はないことを示している。圧迫の深さを改善することを目的に患者を床に移すことについて、タスクフォースは、CPR の中断、輸液路の事故抜去といった患者および蘇生チームのリスクのほうが、胸骨圧迫のわずかな改善よりも上回ると考えた。ベッドがより柔らかい可能性がある院外での状況を再現した研究 2 件と、トレーニングを受けていない救助者が 1 人で CPR を実施する状況を再現した研究 1 件が追加されたことを考慮して、この推奨と提案の対象を院外心停止にまで広げた。しかし、背板に関しては、非直接性のエビデンスしかなく、現在使われている場所で使用を中止するほどの決

定的な証拠はないと判断した.マットレスの硬さや背板の大きさ・置き方によって効果が変わるため、使用者はその点を理解しておく必要がある.

患者にとっての価値と JRC の見解

JRC 蘇生ガイドライン 2020 ではこのトピックに対して以下 4 点の推奨と提案を行っていた (いずれも弱い推奨, エビデンスの確実性は非常に低い Grade 2D).

- 1. 可能ならば硬い表面で CPR を行うことを提案する.
- 2. 院内心停止において、マットレスを硬くできる CPR モードのあるベッドでは CPR モードを使用することを提案する.
- 3. 院内心停止において、胸骨圧迫の深さを改善する目的で、患者をベッドから床に移動 させないことを提案する.
- 4. 背板を使用する効果のエビデンスが非常に少ないので、背板使用についての推奨を決めることができなかった.

今回,文献を再検索したが、1、2 に関する変更はなかった.3 に関しては、胸骨圧迫の深さを改善する目的として、すべての場合において患者をベッドから床に移動させてはならないことを支持するエビデンスは認められなかった。医療従事者が患者を床に移動させる目的は、胸骨圧迫の深さを改善させるためだけではない可能性がある(例えば、処置のしやすさ、交代のしやすさなど). これらをもとに ILCOR の BLS タスクフォースメンバーが議論した結果、上記が削除された。JRC としてもこれは妥当な判断だと考える。なお4に関しては、現在背板を日常的に CPR で使用している場合はその使用を継続してよいが、CPR の質を向上させることを目的として導入する必要はないと考えている.

JRC 蘇生ガイドライン 2020 では、バックボードと表記していたが、主として CPR 用の短い板を対象とした研究結果に基づくため、JRC 蘇生ガイドライン 2025 では背板と表記した.

今後の課題

- ・ 臨床アウトカムを報告する研究
- ・ 背板の設置や患者をベッドから床へ移動する際の手技や運用を検討している研究
- ・ さまざまな構造のベッド・ストレッチャーが利用可能であるなど医療資源が豊富な場合 と、そうでない場合、それぞれの環境で実施された研究

2) 胸骨圧迫

胸骨圧迫は CPR における根幹的処置であり、適切な位置を、適切な深さ・テンポで絶え間なく圧迫することが重要である.

(1) 胸骨圧迫の部位 (SysRev 2025)

レビューの実施理由

胸骨圧迫の手の位置に関する詳細なレビューは,2020年 CoSTR で実施されたものが最後である.2020年以降の EvUp では,画像検査に基づくエビデンスのみが確認されており,こ

れらの研究が新たな非直接的なエビデンスを提供していることから、本トピックは優先的にされた.

CQ:胸骨を圧迫する位置として胸骨の下半分は適切か?

P: あらゆる状況での成人と小児の心停止

I:胸骨の下半分以外の場所を圧迫する

C:胸骨の下半分を圧迫する

0:■重大:神経学的転帰,生存退院

■重要: ROSC, 血圧, 冠灌流圧, 呼気終末二酸化炭素分圧(ETCO2)

T: 2019年10月1日~2024年9月26日

推奨と提案

胸骨を圧迫する位置として、胸骨の下半分を提案する(弱い推奨、エビデンスの確実性: 非常に低い、 Grade 2D).

エビデンスの評価に関する科学的コンセンサス

神経学的転帰,生存退院,または ROSC といった重大なアウトカムを報告した研究はなかった.2020年の ILCOR SysRev 以降,新たな臨床研究は確認されていない.現在のエビデンスは生理学的指標に関する確実性が非常に低い研究 3 件に基づいている.外傷以外の心停止で長時間の蘇生を受けた成人 17 名を対象としたクロスオーバー研究では,胸骨の中央よりも下1/3 を圧迫したほうが,圧迫中の最高動脈圧および ETCO $_2$ が高かった一方で,圧迫解除時の動脈圧,右心房圧のピーク,冠灌流圧には差は認められなかった.30 名の成人を対象とした別のクロスオーバー研究では,ETCO $_2$ 濃度と手の位置との関連は認められなかった.さらに,小児 10 名を対象としたクロスオーバー研究では,胸骨中央よりも下1/3 で圧迫した場合のほうが,最高収縮期血圧および平均動脈圧が高かった.

エビデンスから決断を導くための枠組み(EtD)

心停止後の短期または長期の生存に対する特定の手の位置の効果を評価した研究は存在せず,生理学的代替アウトカムのみが評価されていた.

画像研究には心停止傷病者の臨床アウトカムがないため、本 SysRev からは除外されたが、有用な非直接的情報が存在する。最近の多くの成人および小児の研究では、最大の心室断面積が胸骨の下 1/3 または剣状突起接合部の下に位置していることが示されている。 また、上行大動脈および左室流出路は胸骨中央の下に位置している。またこれらの研究は、年齢、BMI、先天性心疾患、妊娠といった要因によって、個人間に顕著な解剖学的差異があることを示している。したがって、すべての集団にとって、普遍的に最適な手の位置は存在しない可能性がある。胸骨の下半分を圧迫するという推奨と提案を再評価するにあたり、変更を要する決定的な臨床的エビデンスが不足していることから、従来のガイドラインとの整合性を優先した。

患者にとっての価値と JRC の見解

今回のレビューでは、重大なアウトカムを報告した新たな臨床研究はなかった。年齢や体格、先天性心疾患、妊娠などにより個人差が大きく、すべての人に最適な圧迫位置は存在しない可能性があるが、従来の「胸骨の下半分を圧迫」という推奨と提案を変更する決定的なエビデンスはなく、JRC 蘇生ガイドライン 2020 との整合性を優先した。

今後の課題

- ヒトを対象とした研究によるエビデンスが不足している
- ・ 手の位置とアウトカムに関するさらなる臨床研究が必要である
- ・ 胸骨の下半分を見つけるための体表上の指標は何か
- (2) 胸骨圧迫の深さ・テンポ・解除
- (a) 胸骨圧迫の深さ (EvUp 2023)

CQ:胸骨圧迫の最適の深さはどの程度か?

P: あらゆる状況での成人の心停止

I: CPR 中の胸骨圧迫の深さが 5cm 以外の場合

C: 深さが 5cm の場合

0: 退院時・30 日後・60 日後・180 日後・1 年後の神経学的転帰および生存, ROSC, CPR の 質, 冠灌流圧, 心拍出量, バイスタンダーCPR の施行

T: 文献検索は 2022 年 12 月 19 日まで

推奨と提案

標準的な体格の成人に対する用手胸骨圧迫は、6cm を超える過剰な圧迫を避けつつ(JRC 蘇生ガイドライン 2015 を踏襲、弱い推奨、エビデンスの確実性:低い、Grade 2C)、約5cm の深さで行うことを推奨する(JRC 蘇生ガイドライン 2015 を踏襲、強い推奨、エビデンスの確実性:低い、Grade 1C).

エビデンスのまとめ

なおこのトピックは CoSTR2015 作成時に SysRev されている. 今回 2023 年の EvUp では, 2020 年の ScopRev 以降に発表された観察研究が 6 件あったが, 結果は現在のガイドラインの推奨と一致していた.

(b) 胸骨圧迫のテンポ(EvUp 2023)

CQ:胸骨圧迫の最適のテンポはどの程度か?

P:あらゆる状況での成人および小児の心停止

I:胸骨圧迫の特定のテンポ

C:約100/分のテンポ

0: 退院時・30 日後・60 日後・180 日後・1 年後の神経学的転帰および生存, ROSC, CPR の質

T: 文献検索は 2022 年 12 月 19 日まで

推奨と提案

用手胸骨圧迫のテンポは 100~120/分を推奨する (JRC 蘇生ガイドライン 2015 を踏襲, 強い推奨, エビデンスの確実性:非常に低い, Grade 1D).

エビデンスのまとめ

なおこのトピックは CoSTR2015 作成時に SysRev されている. 2023 年の EvUp では, 2020 年の ScopRev 以降に発表された観察研究が 6 件あったが, 結果は従来のガイドラインの推奨と一致していた.

(c) 胸骨圧迫の解除 (EvUp 2023)

CQ:胸骨圧迫で圧迫と圧迫の間は力を完全に抜くべきか?

P: あらゆる状況での成人と小児の心停止

I:胸壁の戻りを最大にすること

C:胸壁の戻りを考慮しない場合

0: 退院時・30日後・60日後・180日後・1年後の神経学的転帰および生存, ROSC, 冠灌流 圧, 心拍出量

T: 文献検索は 2022 年 12 月 19 日まで

推奨と提案

救助者が用手胸骨圧迫を行う際には、胸壁が完全に元の位置に戻るように、圧迫と圧迫の間に胸壁に力がかからないようにすることを提案する(JRC 蘇生ガイドライン 2015 を踏襲、弱い推奨、エビデンスの確実性:非常に低い、Grade 2D).

エビデンスのまとめ

このトピックは CoSTR2015 作成時に SysRev されている. 2023 年の EvUp では, 2020 年の ScopRev 以降に発表された観察研究が 4 件あったが, 結果は従来のガイドラインの推奨と一致していた.

(3) 胸骨圧迫の中断 (SysRev 2022, EvUp 2025)

レビューの実施理由

このトピックは 2015 年の CoSTR 以来見直されていなかったため, ILCOR の BLS タスクフォースは優先的に評価を行った.

CQ: ECG 解析や人工呼吸のために許される胸骨圧迫中断時間はどの程度か?

P: あらゆる状況での成人の心停止

I:胸骨圧迫の中断を最小限にすること(標準的な CPR と比較して, CCF を高くすること、電気ショック前後の中断時間を短くすること)

C:標準的なCPR(介入群と比較して,CCFが低いこと,または電気ショック前後の中断時間が長いこと)

0:■重大:退院時の神経学的転帰および生存

■重要:ROSC

S: RCT と非無作為化研究(非 RCT, 分割時系列解析, 前後比較研究, コホート研究)を対象とした. 論文化されていない研究(例:学会の抄録, 臨床試験のプロトコル) は除外した

T: 文献検索は 2024 年 4 月まで

推奨と提案

CPR を含む救命処置の質改善プログラムの一環として、CCF と電気ショック前後の胸骨圧迫の中断時間をモニタリングすることを提案する(弱い推奨、エビデンスの確実性:非常に低い Grade 2D).

電気ショック前後の胸骨圧迫の中断時間を可能な限り短くすることを提案する(弱い推奨, エビデンスの確実性:非常に低い Grade 2D).

CCF はできるだけ高くして,少なくとも 60%とすることを提案する (弱い推奨,エビデンスの確実性:非常に低い Grade 2D).

エビデンスの評価に関する科学的コンセンサス

RCT が 3 件, 観察研究が 21 件あった. エビデンスは 5 つのカテゴリーに分け, 結果の詳細は以下の表 1 に要約している.

- 1. CPR の質に影響を与える介入を評価した RCT
- 2. 胸骨圧迫の中断を含む、治療の質を改善させることを目的とした介入前後を比較した観察研究、または CCF が異なるシステムでアウトカムを比較した観察研究
- 3. 胸骨圧迫の中断とアウトカムとの関連性を調査した観察研究
- 4. 異なる胸骨圧迫中断時間のカテゴリー間でアウトカムを比較した観察研究
- 5. 生存者と非生存者で胸骨圧迫の中断を比較した観察研究

表1 エビデンスのまとめ

カテゴリー 1. CPR の質に影響を与える介入を評価した RCT	研究 3 件の RCT	エビデンス の確実性 (GRADE 評 価) 非常に低い	主な結果 新しい AED は CCF を高め、電気ショック前後の中断時間を短縮したが、生存率に差はなかった、継続した胸骨圧迫の介入は、CCF を高めたが、生存入院率は低
2. 質を改善させ るための介入前後 または, CCF が異な るシステム間で比 較した研究	6 件の観察 研究	非常に低い	下し、生存退院率に差はなかった. ある研究では、2006~2016年の間に CPR の指標とアウトカムが徐々に改善し ていることを報告した. 一方他の研究では、CCF やショック前後の胸骨圧迫中断が改善しても、生存率の有意な改善は認められなかった.
3. 胸骨圧迫の中 断とアウトカムの 関連を調査した観 察研究	5 件の観察 研究	非常に低い	2件の研究でCCFが高いほど生存率が高いという関連性がみられたが、2件の研究ではその関連性はみられなかった.他の研究では、CCFが高いほどROSCの改善と関連していた.このうちの1件の研究ではショック前後の胸骨圧迫中断が長いほど生存率が低下したが、別の研究では関連性が認められなかった.
4a. 異なる胸骨 圧迫中断時間のカ テゴリー間でアウ トカムを比較した 観察研究	7 件の観察 研究	非常に低い	CPR が 20 分以上続いた患者群では、 CCF が 80%以上の場合、80%未満の場合 より神経学的転帰および生存退院率がよ かったが、CPR 時間が 5 分または 10 分の 患者群では差がなかった。他の 2 件の研 究では、CCF が低い(<40% vs > 80%)ほうが生存退院率が高く、逆に高 い場合(<60% vs <80%や60~79%) は生存率が低かった。別の研究では、CCF が 80%以上の場合、80%未満と比較して ROSC 率が低かった。残る 3 件の研究で は、アウトカムに差がなかった。

4b. 胸骨圧迫の中断(電気ショック前後の中断)の程度ごとに比較された転帰	4 件の観察 研究	ショック前の胸骨圧迫中断時間が短い (<10 秒) 傷病者は、長い(10~20 秒) 傷病者よりも生存率が高いことが 3 件の 研究で示され、ショック前後の胸骨圧迫 中断時間が短い(<20 秒) 傷病者は、長い(20~40 秒) 傷病者よりも生存率が高いことが 2 件の研究で示された. 一方、ショック前の胸骨圧迫中断が短い(<10 秒 vs >10 秒) ことと生存率の関連を認めなかった研究も 1 件あった.
5. 生存者と非生 存者で胸骨圧迫の 中断を比較した観 察研究	8 件の観察 研究	ある研究では、最初の5分間のCCFは 非生存者で高かった。また別の研究では、ROSC せずに15分以上経過した患者でCCFが高かったと報告された。一方、ROSC が得られた傷病者でCCFが高かったという研究もある。その他の5つの研究では差はなかった。

いずれもバイアスのリスクが非常に高いため、すべてのアウトカムについてエビデンスの確実性は非常に低いと評価された. 個々の研究はすべて、交絡因子に起因する重大なバイアスのリスクを抱えていた. このことと研究間の異質性が高かったことから、メタアナリシスを行うことができず、個々の研究の解釈も困難であった.

エビデンスから決断を導くための枠組み(EtD)

ILCOR の BLS タスクフォースは、これらの推奨と提案を行うにあたり、CCF が低いことがCPR の質の低さを反映しているとは限らないことを考慮したが、ガイドラインを作成するには何らかの最低値を示すことが重要と考えた。蘇生医療に関わる専門家の間では、質の高いCPR が患者転帰に重要であるという共通認識がある。質の高いCPR とは、CCF が高いことや電気ショック前後の胸骨圧迫の中断時間が短いことが含まれる。これらのCPR の指標の正確な目標値は不明であるが、胸骨圧迫の中断時間を最小限にすることのメリットが強く信じられているため(胸骨圧迫を行わないことによる悪影響について、生理学的な根拠もあることから)、胸骨圧迫の中断時間が長い場合と短い場合を比較した前向き臨床試験が今後実施される可能性は低い。

このレビューで確認されたエビデンスは、非直接的な研究(介入が別の研究目的で実施された)または観察研究によるものであった。胸骨圧迫の中断と転帰との関連性にはバイアスがある。これは、電気ショック適応の心リズムでは蘇生時間が短く転帰が良好であり、電気ショック非適応の心リズムでは蘇生時間が長く転帰不良の傾向があるためである。胸骨圧迫

中断の回数と割合は心リズムと蘇生処置の継続時間の両方に依存するため、最適な目標値は心停止の特性によって異なる。このような要因により、観察研究のデータを解釈しCPRの指標に関する目標値を示すことは困難である。

動物実験では、ポストコンディショニング (CPR 初期に短時間の意図的な胸骨圧迫の中断)を行うことで、心機能や神経学的転帰が改善する可能性が示されている。しかし、ヒトでのポストコンディショニングに関するデータはない。ポストコンディショニングによる胸骨圧迫中断の理論的な効果と、胸骨圧迫中断による確実な悪影響を比較すると、ポストコンディショニングをしないことによる害のリスクは低く、胸骨圧迫中断時間を短くすることで得られる望ましい効果がリスクを上回ると考えられる。

患者にとっての価値と JRC の見解

成人の心停止に対して、CCF、電気ショック実施前後の胸骨圧迫中断時間が与える影響について SysRev が行われた. JRC 蘇生ガイドライン 2020 では、「手動式除細動では、電気ショック前の胸骨圧迫中断時間をできるだけ短くし、10 秒以下にする」と時間の目安を提案していたが、胸骨圧迫の中断時間をできるだけ短くするほうが望ましいため、ILCOR の推奨と提案からも 10 秒という目安は削除された. 目安時間を設けないことに賛否があると考えるが、JRC としてできる限り短くすることを強調したいため ILCOR の推奨と提案と同様に、10 秒という目安時間を削除した.

今後の課題

- ・ 胸骨圧迫の中断時間を最小限にする手順と, 胸骨圧迫を長時間中断する手順の効果の比較
- ・ ヒトにおけるポストコンディショニングの一環としての胸骨圧迫の意図的な中断の評 価
- ・ さまざまなサブグループ解析(電気ショック適応 vs 非適応, 短時間 vs 長時間の蘇生など)における胸骨圧迫中断時間および CPR の指標の最適値

(4) 胸骨圧迫の交代

本 CQ は CoSTR2010 を作成する際のレビューにおいて、「胸骨圧迫:人工呼吸比(CV 比)が 救助者の疲労に影響するかどうか」という観点から間接的に検討された。その結果、胸骨圧 迫のみの CPR では 30:2 の CPR に比べて胸骨圧迫の質の低下はより早く出現するという結論に基づいて、JRC 蘇生ガイドライン 2010 では、「胸骨圧迫を施行する場合は救助者の疲労による胸骨圧迫の質の低下を最小とするために、可能であれば 1~2 分で救助者の交代を考慮する。胸骨圧迫のみの CPR ではより短時間で圧迫が浅くなることに留意する。胸骨圧迫の交代は圧迫の中断時間が最短になるように行われなければならない」とされ、この推奨が JRC 蘇生ガイドライン 2015 へ引き継がれていた。CoSTR2020 では、救助者の疲労や、それに伴う CPR の質の低下について、胸骨圧迫のみの CPR と人工呼吸を伴う CPR との違いに着目して ScopRev が行われていたが、推奨と提案を変更するほどのエビデンスはなかったため、JRC 蘇生ガイドライン 2020 にもそのまま引き継がれていた。なお CoSTR2025 ではエビデンスの再検討がされていなかったが、JRC 蘇生ガイドライン 2025 では、JRC 蘇生ガイドライン 2010 を踏襲した。

(5) ヘッドアップ CPR (SysRev 2025)

レビューの実施理由

このトピックは ILCOR の BLS および ALS タスクフォース合同で評価された. ヘッドアップ CPR に関する初の SysRev に基づく推奨と提案は,2021年の CoSTR にて公表された. その後,本トピックは EvUp で再評価したところ新たな観察研究が確認されたため,2025年で再度 SysRev が実施された.

CQ: ヘッドアップ CPR は有益か?

P: あらゆる状況での成人と小児の心停止

I:ヘッドアップ CPR またはヘッドアップ CPR バンドル (例:頭部拳上, active compression-decompression: ACD, impedance threshold device: ITD)

C: 仰臥位での標準 CPR または胸骨圧迫のみの CPR

0:■重大:退院時,30日後の神経学的転帰および生存,生存退院,生存入院

■重要: ROSC

S :

T: 2021年7月22日~2024年7月19日

推奨と提案

ヘッドアップ CPR またはヘッドアップ CPR バンドルは, 臨床試験または研究活動の場を除き実施しないことを提案する (弱い推奨, エビデンスの確実性:非常に低い Grade 2D).

エビデンスの評価に関する科学的コンセンサス

2021年の研究1件に加え、新たな観察研究が2件あった.いずれの研究も同一研究グループから発表されたものである.すべてのアウトカムにおけるエビデンスの確実性は、重大なバイアスのリスク、非一貫性、および不精確さのために非常に低いと評価された.

エビデンスから決断を導くための枠組み(EtD)

本推奨と提案を作成するにあたり、ILCOR の BLS タスクフォースは、現時点で入手可能なエビデンスが依然として限られており、適切な比較を含む RCT または観察研究が存在しないことを認識した. 既存の研究 3 件で使用された比較群には問題があり(例:異なる期間での比較)、いくつかのアウトカムは既知の交絡因子や時間的傾向を調整せずに報告されていた. 既存のヘッドアップ CPR バンドルの導入には、高価な機器(自動頭部/胸部挙上装置、自動胸骨圧迫装置、ITD)および相当なトレーニングが必要である.

ヘッドアップという介入は一見単純に思えるが、実際の実施には複雑さが伴うことが、 SysRev に含まれた研究は示していた. 特定のバンドルアプローチを支持する臨床的エビデンスや、単独のヘッドアップ CPR が他のバンドルに比べて優れているとするエビデンスは確認されなかった. ヘッドアップ CPR を迅速に行うことにより神経学的転帰が改善する可能性が示唆されているが、さらなる研究が必要である.

患者にとっての価値と JRC の見解

ヘッドアップ CPR 戦略は、ITD、自動胸骨圧迫装置、自動ヘッドアップ装置とセットで行わ れることが現在では一般的で(図3),そのような状況が整っていないわが国では、現実的に は実行することが容易ではない戦略と考える. 一般的に脳灌流圧は, 平均動脈圧と頭蓋内圧 の差によって決まる. したがって CPR 中にヘッドアップを行えば、静脈圧の低下による頭蓋 内圧の低下によって、脳灌流圧増加が期待できる.特に平均動脈圧の低い CPR 中には、この 影響は大きいかもしれない. 今回の SysRev でも, 限られた観察研究ではあるが, ヘッドアッ プ CPR が心停止傷病者の短期アウトカムを改善する可能性が示唆された. しかし, エビデン スの確実性は非常に低く、バイアスのリスクが高い. ヘッドアップ CPR にはいくつかの問題 点が存在する. 1 つには CPR 中にヘッドアップを行うには、環境に制限がある. 傷病者をヘッ ドアップするには上半身を挙上できるベッドに寝かせ、全身か上半身だけを傾ける必要があ る. 床や地面などでは実施できない. また, ヘッドアップされた状態は水平な状態と比較し て、強く用手胸骨圧迫をすることも、BVM を使用して人工呼吸を行うことも困難であり、実質 的に 自動胸骨圧迫装置が必要となる. なお米国では、2019 年に FDA が自動ヘッドアップ装 置を認可している. ヘッドアップ CPR による長期のアウトカムについての研究が望まれる. またヘッドアップ CPR を普及させるには、新たな教育とトレーニングだけでなく、その費用 対効果の検討が必要である. もし長期のアウトカムの明らかな改善がなく, 費用対効果も期 待できないならば、ヘッドアップ CPR は現実的な戦略ではないと考える.

図3 ITD・自動胸骨圧迫装置・自動ヘッドアップ装置を組み合わせたヘッドアップ CPR 戦略の一例 (Moore JC, et al. Faster time to automated elevation of the head and thorax during cardiopulmonary resuscitation increases the probability of return of spontaneous circulation. Resuscitation. 2022 Jan;170:63-69. [PMID: 34793874] より 転載)

今後の課題

- ・ ヘッドアップ CPR またはヘッドアップ CPR バンドルの効果に関する質の高いエビデンスが求められる.
- ・ ヘッドアップ CPR を使用する際の最適な手技(例:ヘッドアップの角度とタイミング) についての知見が不足している.
- (6) その他の手法:咳 CPR, 前胸部叩打, 拳ペーシング (EvUp 2023)

CQ:循環を回復させるための胸骨圧迫以外の手法は有効か?

P:成人と小児の心停止

I:咳 CPR, 前胸部叩打, 拳ペーシング

C:標準的 CPR

32

- 0: 退院時もしくは30日後の神経学的転帰,退院時もしくは30日後の生存,ROSC,心拍出量・循環の回復
- S: RCT と非無作為化試験,症例集積研究(≧5症例)を対象とした. 論文化されていない研究,学会抄録,マネキンやシミュレーションの研究,ナラティブレビュー,1次データに基づかない論説または意見. 動物実験および実験モデルは対象から除外した
- T: 英語の抄録がある, あらゆる言語, あらゆる年に出版された研究を対象とし, 文献検索は 2022 年 12 月まで

推奨と提案

咳 CPR は心停止に対してはルーチンに行わないことを推奨する (JRC 蘇生ガイドライン 2020 を踏襲,強い推奨,エビデンスの確実性:非常に低い,Grade 1D).

目撃があり、モニターされているという院内の状況(心臓カテーテル室内など)で、無灌流となるような心リズムが意識消失する前にすみやかに認識されるという例外的な状況でのみ、一時的手段として咳 CPR を考慮することを提案する(JRC 蘇生ガイドライン 2020 を踏襲、弱い推奨、エビデンスの確実性:非常に低い、Grade 2D).

前胸部叩打は心停止に対して行わないことを推奨する(JRC 蘇生ガイドライン 2020 を踏襲,強い推奨,エビデンスの確実性:非常に低い, Grade 1D).

拳ペーシングは行わないことを推奨する (JRC 蘇生ガイドライン 2020 を踏襲,強い推奨, エビデンスの確実性:非常に低い, Grade 1D).

目撃があり、モニターされているという院内の状況(心臓カテーテル室内など)で、徐脈から心静止となるような心リズムが意識消失する前にすみやかに認識されるという例外的な状況でのみ、一時的手段として拳ペーシングを行うことを提案する(JRC 蘇生ガイドライン2020を踏襲、弱い推奨、エビデンスの確実性:非常に低い、Grade 2D).

エビデンスのまとめ

このトピックは CoSTR2020 作成時に SysRev されており, エビデンスの詳細は JRC 蘇生ガイドライン 2020 を参照のこと. CoSTR2023 において新しいエビデンスは見つからなかった.

3. 気道確保と人工呼吸

1) 受動的換気法 (SysRev 2022)

レビューの実施理由

このトピックは 2015 年の CoSTR 以来見直されていなかったため, ILCOR の BLS タスクフォースにより優先的に評価された.

CQ: CPR 中に間欠的陽圧換気 (IPPV) を行うことと比べて、受動的換気は有益か?

P: あらゆる状況での成人と小児の心停止

I:胸骨圧迫に加えて、受動的換気法(体位、気道確保、受動的酸素投与、Boussignac チューブ、一定流量での酸素送気)を加えること

C:通常のCPR

0:■重大:退院時の神経学的転帰および生存退院

■重要: ROSC

S: RCT と非無作為化研究(非 RCT, 分割時系列解析, 前後比較研究, コホート研究)を対象とした. 論文化されていない研究(会議の抄録, 臨床試験のプロトコルなど)は除外した

T: 英語抄録がある,全ての年の,全ての言語による研究を対象とした. 文献検索は 2021 年 10 月 16 日まで

推奨と提案

臨床的なアウトカムを指標とした研究からの新たなエビデンスがない現状では、受動的酸素投与を含めた受動的換気をルーチンには行わないことを提案する(弱い推奨、エビデンスの確実性:非常に低い Grade 2D).

エビデンスの評価に関する科学的コンセンサス

RCT が 2 件と観察研究が 1 件, 非常に小規模のパイロット RCT が特定された. エビデンスの全体的な確実性は非常に低く, 個々の研究はすべて重大なバイアスリスクと非直接性リスクがあった. また, 異質性が高かったため, メタアナリシスでは改良された気管チューブを使用した酸素の定流量送気による換気時に圧力をかけない受動的換気と, 機械的換気を比較した RCT2 件のみが検討された.

観察研究では、中断を最小限に抑えた CPR バンドル (中断のないショック前およびショック後の胸骨圧迫と初期のアドレナリン投与も含む) の一部として、受動的換気が評価されていた.

パイロット RCT は、CPAP を含む換気技法を用いて胸骨圧迫を受けた9名の傷病者と、CPR 中に換気量の制御を受けた11名の傷病者を比較していた.

エビデンスから決断を導くための枠組み(EtD)

換気時に圧力をかけない受動的換気法は、間欠的陽圧換気(IPPV)の代替となる可能性がある。この換気法は、より高度な気道管理を行うかわりに、胸骨圧迫中の中断を短縮できる可能性があり、また、気道管理が容易なことから、IPPVに伴う潜在的な有害事象(胸腔内圧の上昇により心臓への静脈還流が減少し、冠灌流圧が低下し、肺血管抵抗が上昇する)を減らす可能性がある。

大規模な RCT2 件では、気管チューブを用いる IPPV と、改良型気管チューブ、つまり Boussignac チューブを用いて酸素を持続送気する受動的換気を比較していた. Boussignac チューブを使用すると、気道内圧が約 10cmH₂0 に維持されていた. 利用可能な場合は、CPR

を行う際に ACD 装置を使用していた. 該当した観察研究は、換気の方法やリズムチェックのタイミング、そして、CV 比、ショック中の胸骨圧迫中断時間などの複数の手順が多くの面で異なっていた. 全体として、主に非直接性バイアスのリスクにより、エビデンスの確実性は非常に低いと評価された. 特定の EMS が CPR の中断の時間を最小限に抑えるために、一連の治療法として受動的換気を採用している場合には、現時点でこの方法に否定的な強いエビデンスがないため、この方法を「継続する」ことは合理的と考えられる.

患者にとっての価値と JRC の見解

このトピックは CoSTR2015 以来,見直しがされていなかった. CoSTR2015 では受動的換気はまだその有効性が明らかではなく,JRC 蘇生ガイドライン 2015 では「標準的な CPR においては、受動的酸素投与法を日常的に用いないことを提案する(弱い推奨,非常に低いエビデンス). ILCOR は院外心停止傷病者に対する連続胸骨圧迫を含む治療バンドルをすでに採用している EMS は、バンドルに受動的換気法を含めることを考慮してよいと提案している(弱い推奨,非常に低いエビデンス). わが国ではこのような治療バンドルが採用されている EMS は存在しない.」と記載していた.

受動的換気による酸素化の効果などが十分であれば、胸骨圧迫の中断時間を短縮するなどの効果により心停止患者転帰改善が期待できる。しかし抽出できたエビデンスの多くは、いずれもその確実性は非常に低いと評価され、バイアスのリスクと非直接性などがあり、明確な有効性は示されなかった。Boussignac チューブは 10cmH20 の陽圧を維持できるとされているが、わが国の実臨床においてはあまり活用されておらず、臨床的に有効とする根拠は不足している。受動的換気がもたらす転帰改善(生存、神経学的転帰)について今後研究が必要である。本トピックをわが国へ適用するためには、心停止中の CPR において受動的換気が BVMと同等の酸素化をもたらす、または胸骨圧迫の中断時間を短縮することにより、転帰の改善につながるなどの効果をもたらし、実際の CPR においてルーチンに行うことが許容できるか検討する必要がある。

今後の課題

- 市民救助者を想定した場合の受動的換気法の有効性
- ・気道を確実に確保させる最適な方法
- ・ 有効な換気・酸素化のために必要な最低限の換気量というものがあるのか
- ・ 小児における受動的換気の有効性

4. CPR 中の胸骨圧迫と人工呼吸

1) 市民

(1) バイスタンダー(通信指令員の口頭指導なし)による胸骨圧迫のみの CPR と人工呼吸を伴う CPR の比較(SysRev 2025)

レビューの実施理由

CoSTR2020 に基づく ILCOR の推奨と提案は発表された SysRev に基づいている. それ以来, このトピックはレビューされていなかったため, 優先的に評価された. バイスタンダーがただちに行う CPR の効果を明確にするため, 本レビューでは通信指令員の口頭指導による CPR が実施された症例を除外して検討した. 以前この CoSTR に含まれていた口頭指導による CPR を含む 4 件の研究は, 口頭指導による CPR に関する CoSTR に移された.

CQ:通信指令員の口頭指導がない場合、胸骨圧迫のみの CPR と人工呼吸を伴う CPR ではどちらが有効か?

- P: あらゆる状況での成人および小児の心停止
- I:口頭指導なしで実施された胸骨圧迫のみの CPR
- C: 口頭指導なしで実施された胸骨圧迫と人工呼吸を伴う CPR
- 0:■重大:退院時または30日後およびそれ以降の任意の時点における神経学的転帰
 - ■重要: 生存退院または30日後の生存,生存入院,退院後または30日以降の任意の時点での生存,ROSC,QOL(何らかの指標またはスコアで評価)
- S:標準的な基準に合致していても、未調整データのみを報告している観察研究は除外された
- T:前回のSysRev とは異なる検索式を用いたので、検索は2024年10月21日までのすべて の年を対象とした

優れた医療慣行に関する記述

全ての心停止傷病者に対して胸骨圧迫を行う(優れた医療慣行に関する記述).

推奨と提案

人工呼吸のトレーニングを受けており、それを行う技術と意思のある救助者は、全ての心停止傷病者に対して胸骨圧迫と人工呼吸を実施することを提案する(弱い推奨、エビデンスの確実性:極めて低い Grade 2D).

エビデンスの評価に関する科学的コンセンサス

このトピックに直接関連する新たな研究は見つからなかった。成人心停止に対して口頭指導なしで実施された胸骨圧迫のみのバイスタンダーCPR と, CV 比が 15:2 および 30:2 の人工呼吸を伴う CPR を比較した観察研究 3 件に基づいている。なお, 15:2 の CPR はもはや推奨されていないため、これらの研究に関するすべてのアウトカムは非直接性のためにグレードダウンした。神経学的転帰というアウトカムについて、これらの研究から得られるデータ

はなかった.このアウトカムに関する研究で行われたバイスタンダーCPRには、口頭指導を受けて行われた場合と口頭指導を受けずに行った場合の両者が含まれているが、後者の割合が非常に高かった研究から引用されている.

エビデンスから決断を導くための枠組み(EtD)

これらの推奨を行うにあたり、ILCOR のBLS タスクフォースは CV 比 15:2 の CPR との比較で得られたエビデンスの確実性が極めて低いことを認識しつつも、成人に対する CPR では胸骨圧迫を実施する必要性および、胸骨圧迫のみの CPR または圧迫に重点を置いた CPR によりバイスタンダーによる CPR の実施率が向上する可能性を重視した. タスクフォースはまた、以下の点を考慮した.

- ・既存のエビデンスは、成人において胸骨圧迫のみの CPR が 15:2 の CPR と同等であることを示唆している. 含まれた研究では、通信指令員による口頭指導がなかったことから、 CPR はトレーニングを受けた者や非勤務中の医療従事者によって行われたと考えられる.
- ・さらに3件の研究では,胸骨圧迫のみのCPRと従来型CPRとの間に患者転帰の未調整値に差がなかった.1980年代に行われたこれらの研究のうち1件は,CPRの質の影響を検討しており,客観的および主観的尺度を組み合わせたこの研究では,15:2が正しく行われた場合(適切な手技と効果)には,正しく行われなかった場合(31% vs 8%),あるいは胸骨圧迫のみのCPRが行われた場合(31% vs 20%)と比較して生存率が高いことを示した.15:2のCPRが正しく行われた割合は,医療従事者のバイスタンダーのほうが,一般のバイスタンダーよりも高かった(58% vs 42%).
- ・ 口頭指導を多く含むパイロット RCT では、トレーニングを受けた市民救助者によって実施された胸骨圧迫のみの CPR と従来型 CPR との間に、1日後の生存率に差はないことが示された。
- ・ 胸骨圧迫のみの CPR は市民に好まれ、学習および記憶が容易である.
- ・ 文献レビューによると、胸骨圧迫のみの CPR では CPR の開始までの時間が短くなり、胸骨圧迫の総数が多くなることが報告されている. しかし、CPR を続けるにつれて救助者が疲労を感じ、人工呼吸を伴う CPR に比べて圧迫の深さが低下する可能性がある.
- ・ 気道確保と人工呼吸の実施は技術を要するため、特にトレーニングを受けていない、あるいはほとんどトレーニングを受けていないバイスタンダーでは、CPR中に有効な人工呼吸を提供することが困難である.
- ・ どちらの CPR も何もしないよりは優れており、BLS/CPR トレーニングにおいて指導されるべきである.

患者にとっての価値と JRC の見解

胸骨圧迫と人工呼吸を組み合わせることは、特に呼吸原性の心停止では転帰を改善させる可能性がある. そのため、過去のガイドラインとの整合性を考慮し、過去の提案を変更しない.

今後の課題

・ 通信指令員の口頭指導なしで実施された胸骨圧迫のみの CPR と 30:2 の CPR による転帰

への影響

・ 小児に関するデータが必要である

2) 医療従事者

- (1) 院外
- (a) 胸骨圧迫:人工呼吸比(SysRev 2025)

レビューの実施理由

このトピックは、BLS および PLS タスクフォース合同で評価された。CoSTR2020 に基づく ILCOR の推奨と提案は 2017 年に発表された SysRev に基づいている。このトピックは 2017 年以降レビューされていなかったため、優先的に評価された。

CQ: 救急隊員が行う胸骨圧迫と人工呼吸の組み合わせで最適な比はいくつか?

P:成人および小児の院外心停止

I:EMS によって実施される任意の CV 比

- C: EMS によって異なる CV 比が実施された群との比較. CPR を受けていない群, 用手的 CPR と自動胸骨圧迫装置を用いた CPR の比較は除外した. 何らかの自動胸骨圧迫装置の使用が含まれる研究は, すべての治療群において同様に適用されている場合に限り含まれる
- 0:■重大:退院時または30日後および以後の任意の時点における神経学的転帰
 - ■重要: 生存退院または30日後の生存, 生存入院, 生存退院または30日以降の任意の時点での生存, ROSC, QOL(任意の指標)
- S:未調整データのみを報告した観察研究は除外した
- T: 文献検索は 2024 年 10 月 21 日まで

推奨と提案

高度な気道確保器具が使用されていない成人の CPR 中は, CV 比として 30:2 を提案する (弱い推奨, エビデンスの確実性:非常に低い Gade 2D).

エビデンスの評価に関する科学的コンセンサス

2005年の蘇生ガイドライン改定による影響を検討した研究が8件あったが、これらの研究ではCV比の変更が、他の介入(1ショックプロトコルなど)との組み合わせのなかで検討された。これらの研究は後ろ向きコホート研究が7件で前向き研究が1件であった。いずれの研究も小児は対象にしていなかった。すべてのアウトカムに関するエビデンスの確実性は非常に低かった。

重大なアウトカムである「退院時または 30 日後の神経学的転帰」については、コホート研究が 2 件確認された。コホート研究の 1 件では、初期波形がショック非適応の心リズムであった 3,960 例の院外心停止において、2005 年ガイドライン(CV 比 30:2 を含む)の導入後の期間には、CV 比 15:2 を用いていた期間と比較して、退院時の良好な神経学的転帰

(脳機能カテゴリー [CPC] スコア 1-2) が改善していた (OR 1.56 [95%CI 1.11~ 2.18]). もう一方のコホート研究では、初期波形がショック適応であった 522 例の院外心停止を対象に、2005 年ガイドラインに基づく治療を受けた場合でも、CV 比 15:2 による治療を受けた場合と比較して 30 日後の神経学的転帰に差は認められなかった (OR 0.50 [95%CI 0.20~1.25]).

重要なアウトカムである「生存退院または30日後の生存」については、コホート研究が6件特定された、異質性が認められたため、メタアナリシスは実施されなかった。

CV 比 30:2 と 15:2 の比較

院外心停止の全リズムを対象とした研究 3 件のうち、2 件では CV 比 30:2 のほうが 15:2 より生存率が高かった(a0R 1.8 [95%CI 1.2~2.7]; a0R 2.5 [95%CI 1.4~4.6]). 一方、3 件目の研究では有意差は認められなかった(a0R 1.42 [95%CI 0.79~2.57]). 初期波形がショック適応であった院外心停止に関しては、1 件の研究で CV 比 30:2 のほうが 15:2 より生存退院率が高かった(a0R 1.62 [95%CI 1.33~1.98])が、時間的傾向を補正すると有意差はなくなった(a0R 1.07 [95%CI 0.71~1.62]). 初期波形がショック非適応の心リズムであった院外心停止においては、1 件の研究で CV 比 30:2 のほうが 15:2 より生存率が高かった(a0R 1.53 [95%CI 1.14~2.05])が、もう1 件の研究では有意差は認められなかった(a0R 1.19 [95%CI 0.82~1.73]).

CV 比 50:2 と 5:1 の比較

初期波形がショック適応でバイスタンダーによる目撃があった 200 例の院外心停止を対象とした前後比較研究では、CV 比の 5:1 から 50:2 への変更を含む蘇生治療バンドル導入後に、退院生存率が改善した(aOR 2.17 [95%CI $1.26\sim3.73$]). 重大なアウトカムである ROSC については、1,243 例の院外心停止を対象としたコホート研究 1 件で、CV 比 30:2 と 15:2 の間にリスク調整後の ROSC 率に有意差は認められなかった(OR 1.31 [95%CI $0.99\sim1.73$]).

エビデンスから決断を導くための枠組み(EtD)

本提案の作成にあたり、ILCOR の BLS タスクフォースは過去の推奨と提案との整合性と、本レビューで確認された知見に重きをおいた. これらの知見は CV 比を 30:2 に変更することを含む治療バンドルにより多くの命が救われたことを示唆している. タスクフォースはまた下記の点も考慮した.

本レビューに含まれたすべての研究には非直接性に関する深刻なリスクが存在しており、CV比の変更は、CPR サイクルの延長、最大3回までの連続ショックの削除、電気ショック後のリズム確認の省略、胸骨圧迫の中断の減少など、他の変更を含む治療バンドルの一部として導入されていた。これらの研究で観察された有益性はCV比の変更自体に起因しない可能性がある.

今後の研究およびレビューは、現在の推奨である30:2と比較して、より高いCV比の有益性に焦点を当てるべきである.

患者にとっての価値と JRC の見解

この提案を行うにあたり、2005年以降の提案との一貫性や、CV 比を 30:2 に変更したことを含むガイドライン変更が心停止傷病者における転帰の改善に寄与しているという知見を

重視した. CV 比を変更することは、臨床や教育において指導内容・トレーニング用資器材設定の変更などの影響が懸念される. また、現在の提案を変更する根拠となるデータがないことを考慮して、JRC 蘇生ガイドライン 2020 の内容を変更しない.

今後の課題

- · CV 比以外の条件を同じにした状況における, 異なる CV 比の影響
- · CV 比を 30:2 よりさらに高くした場合の有益性
- ・ CPR 中の短い胸骨圧迫の中断時間内に,有効な2回の人工呼吸を行うことができるのか 否か
- · CV 比と、酸素化を維持するために必要な1回換気量と関係

(b) 連続した胸骨圧迫による CPR と人工呼吸を伴う CPR (SysRev 2025)

レビューの実施理由

CoSTR2020 に基づく ILCOR の推奨と提案は,2017 年に発表された SysRev に基づいている. このテーマは2017 年以降レビューが実施されていなかったため,優先的に評価された.

CQ: 救急隊員が行う CPR では胸骨圧迫を連続して行うべきか、間欠的に中断する(30:2など)べきか?

- P:成人および小児の院外心停止
- I: 救急隊員による連続した胸骨圧迫(人工呼吸の有無を問わない)
- C: 救急隊員による人工呼吸を伴う CPR (CV 比を問わない)
 CPR を受けていない群と比較した研究や、用手的 CPR と自動胸骨圧迫装置を用いた CPR を比較した研究は除外した. 何らかの 自動胸骨圧迫装置の使用を含む研究は、すべての治療群に適用されている場合にのみレビューに含めた
- 0:■重大: 退院時または30日後,および30日以降の任意の時点における神経学的転帰 〔脳機能カテゴリー (CPC) またはmodified Rankin Scale (mRS) で評価〕
 - ■重要: 生存退院または30日後の生存,生存入院,退院後または30日以降の任意の時点での生存,ROSC,QOL(何らかの指標またはスコアで評価)
- S:標準的な除外基準に加え、未調整データのみを報告している観察研究も除外した
- T:検索語が改訂されたため、検索対象期間はすべての年を対象に 2024 年 10 月までとした

優れた医療慣行に関する記述

高度な気道確保ができるまでの間、救急隊員は CV 比 30:2 で CPR を行う(優れた医療慣行に関する記述).

気管挿管など高度な気道確保が行われた後,救急隊員は連続的胸骨圧迫を行いつつ,1分間に約10回の人工呼吸を行う(優れた医療慣行に関する記述).

エビデンスの評価に関する科学的コンセンサス

クラスタークロスオーバーRCT1件およびコホート研究3件が特定された.そのうち2件は,以前に実施されたクラスターRCTの二次解析であった.これらの研究は,非直接性およびバイアスのリスクによりグレードダウンされ,エビデンスの確実性は低~中等度と評価された.エビデンスの概要は表2に示す.

表 2 救急隊員による連続した胸骨圧迫による CPR と人工呼吸を伴う CPR の比較

アウトカム	研究・対象	結果
(エビデンスの	1017L X13X	MI /
, ,		
確実性)		
神経学的転帰	成人を対象としたク	30:2と比較して差は認められなかった
(確実性:中等	ラスターRCT1 件(非	
度)	同期 PPV を伴う連続し	
	た胸骨圧迫 vs 30:2	
	の人工呼吸を伴う	
	CPR)	
生存退院また	 成人を対象とした 1	差は認められなかった
は30日後の生存	件のクラスターRCT	71.00 pt = 7.00 00 00 00 00 00 00 00 00 00 00 00 00
(確実性:低~		
中等度)	3件の観察研究:	
中等反)	1. 中断を最小限	1. 中断を最小限にした CPR は,退院生
	にした CPR vs 人工呼	存率と有意に関連 (aOR 3.0 [95%CI 1.1~
	吸を伴う CPR(15:	8.9])
	2, スタックショッ	
	ク、ショック後リズム	
	確認が含まれていた)	
	2. Nichol らのク	2. 事後解析では,有意差なし
	ラスターRCT の	
	British Columbia の	
	みの事後解析	
	3. ROC レジスト	 3. 二次解析の結果,連続した胸骨圧迫
	U, ROC CCC, ALPS,	は人工呼吸を伴うCPRと比較して生存退院率
	PART 試験のいずれか	の改善と関連 (aOR 1.20 [95%CI 1.04~
		1.38]). ただし, 予め定められた CPR 戦略が
	に登録された傷病者の	
	二次解析(非同期人工	適切に実施された場合では、連続した胸骨圧
	呼吸を伴う連続した胸	迫は生存率が有意に低下(aOR 0.72 [95%CI
	骨圧迫 vs 人工呼吸を	0.64~0.81]), 一方で, 30:2では生存率は
	伴う CPR(30:2))	やや高かったが、有意差は認められなかった
		(aOR 1.05 [95%CI 0.90∼1.22])
	成人を対象としたク	30:2と比較して差は認められなかった
	ラスターRCT1 件	

アウトカム	研究・対象	結果
(エビデンスの		
確実性)		
ROSC(確実	コホート研究の1件	15:2と比較して差は認められなかった
性:低~中等	では、中断を最小限に	
度)	する CPR と人工呼吸を	
	伴う CPR の比較が行わ	
	れた. 人工呼吸を伴う	
	CPR には,胸骨圧迫:	
	人工呼吸比 15:2, 連	
	続ショック,ショック	
	後のリズムチェックが	
	含まれていた	

ALPS: 院外心停止におけるアミオダロン,リドカイン,プラセボの比較試験,aOR: 調整オッズ比,PART: 実用的気道管理試験,PPV: 陽圧換気,ROC: 蘇生アウトカムコンソーシアム

エビデンスから決断を導くための枠組み(EtD)

院外心停止において連続した胸骨圧迫、または人工呼吸を伴う CPR のどちらが優れているかを支持する確実性の高いエビデンスは存在しない. そのうえで、質の高い胸骨圧迫を継続することの重要性、および救急隊員に対しての蘇生の実施手順の簡便性を重視した. 推奨と提案の文言は、以下の要因を考慮して変更した.

- 1. 既存の文言は誤解を招くおそれがあった.
- 2. 最も質の高いエビデンスは CV 比 30:2 と, 圧迫を中断しない 1 分間あたり 10 回の PPV を比較したクラスターRCT であり, これは蘇生開始から最初の 3 サイクル (約 6 分間) までの BLS に限定された. その後は両群ともに同一の ALS プロトコルに切り 替えられ, 高度気道確保と 1 分間に 10 回の換気が行われた.
- 3. 同期/非同期にかかわらず、実際の換気回数にはばらつきがあることが報告されており、これは臨床現場での実行可能性に影響する可能性がある.
- 4. クラスタークロスオーバーRCT の二次解析では、30:2の比率は連続した胸骨圧迫と 比較して実行が難しく、遵守率が低下する可能性があることが示されている.一方 で、正確に実施された場合、30:2の比率のCPR は非同期CPR や誤った30:2のCPR の実施と比較して、良好なアウトカムと関連していた可能性があることも示唆され ている.

さらに、目撃されたショック適応波形の院外心停止に対する中断を最小にする CPR (例:人工呼吸なしで 200 回圧迫)を支持する 2017 年の推奨を削除した。その理由は、当該推奨が介入効果を報告した単一の後ろ向き研究のみに基づいていたためである。この研究は、他の蘇生処置の方法も含まれる一連の介入の一部であったため、未調整の交絡による深刻なバイアスのリスクがあった。

また,以下の点も考慮した:

観察研究において、胸骨圧迫の中断はアウトカムの悪化と関連しており、人工呼吸のための中断は中でも大きな要因であり、冠動脈および大動脈の血流に悪影響を与える可能性がある. 非同期 PPV (胸骨圧迫を中断しない換気) を行うことで、酸素化を損なうことなく胸骨圧迫の質を維持できる可能性がある.

連続した胸骨圧迫における戦略は比較的一貫していたが、換気方法には非同期 PPV と受動酸素化(換気を行わず胸骨圧迫中に酸素を供給)などのばらつきがあった. なお、換気の妥当性について評価した研究はなく、報告されていたのは胸骨圧迫の質(例: CCF)などの指標に限られていた.

患者にとっての価値と JRC の見解

CoSTR2025 では高度な気道確保が行われるまでの間、胸骨を連続的に圧迫しながら BVM で人工呼吸を行う方法と、30:2の CV 比で CPR を行う方法の両者がほぼ同等の有効性があるとみなして、これらのいずれか一方を行うことに対して「強い推奨」が与えられた。これは CoSTR2020 での推奨を引き継ぐものであり、JRC 蘇生ガイドライン 2020 もこの推奨に準拠していた。しかし、その根拠となった研究では、主要評価項目である生存退院率を含むすべての評価項目に関して連続胸骨圧迫は 30:2 に劣る傾向が示された。この傾向は統計学的には有意ではなかったが、per-protocol 分析では連続的胸骨圧迫は有意に 30:2 よりも劣っていた。

上記の研究を実施するうえでのプロトコルでは、蘇生の初期段階(蘇生開始後約6分)で 気管挿管を行うことになっている.しかし、わが国においては、病院前で気管挿管を含む高度な気道確保が行われる症例は全体の半数未満である. すなわち、CoSTR2005で引用された研究における蘇生と、わが国の病院前における蘇生とでは、その運用の実態が異なる.また、わが国では30:2のCPR は教育体系において標準化されており、習熟度が高く遵守しやすい手技として現在も広く用いられている.

上記のような事情を考慮した結果, JRC では優れた医療慣行に関する記述として, CoSTR2025 で推奨された連続的胸骨圧迫(および約1分間に約10回の人工呼吸)を高度な気道確保が行われた状態に限定し, それ以外には30:2のCV比を用いることとした.

今後の課題

- ・ 蘇生の初期段階で高度な気道確保が行われると仮定した場合の連続的胸骨圧迫の効果
- 連続した胸骨圧迫、または30:2のCV比の遵守が傷病者のアウトカムに与える影響
- (2) 院内
- (a) 連続した胸骨圧迫による CPR と人工呼吸を伴う CPR(SysRev 2025)

レビューの実施理由

このトピックは ILCOR の BLS および PLS タスクフォース合同で評価された. CoSTR2020 に基づく ILCOR の推奨と提案は,2017年に発表された SysRev に基づいている. このトピックは2017年以降レビューされていなかったため,詳細な再検討の優先事項とされた.

CQ: 院内で医療従事者が行う CPR では胸骨圧迫を連続して行うべきか、間欠的に中断する(30:2 など)べきか?

P:成人および小児の院内心停止

I:院内の医療従事者による連続した胸骨圧迫(人工呼吸の実施有無は問わない)

C:院内の医療従事者による人工呼吸を伴う CPR (CV 比は問わない). CPR を受けていない 群と比較した研究や, 用手的 CPR と自動胸骨圧迫装置を用いた CPR を比較した研究は 除外した. 何らかの自動胸骨圧迫装置の使用を含む研究は, すべての治療群に適用さ れている場合にのみレビューに含めた

0: ■重大: 退院時または 30 日後, および 30 日以降の任意の時点における神経学的転帰 ■重要: 生存退院またはそれ以降任意の時点までの生存, ROSC, QOL

S:標準的な除外基準に加え、未調整データのみを報告している観察研究も除外した.

T: 検索式が改訂されたため、検索対象期間はすべての年を対象に 2024 年 10 月 21 日まで とした

優れた医療慣行に関する記述

院内の心停止では高度な気道確保ができるまでの間,CV 比 30:2 で CPR を行う(優れた医療慣行に関する記述).

院内の心停止では気管挿管など高度な気道確保が行われた後は、連続的胸骨圧迫を行いつつ、1分間に約10回の人工呼吸を行う(優れた医療慣行に関する記述).

エビデンスのまとめ

新たな研究は確認されなかった.前回のレビューに含まれていた単一施設のコホート研究1件は,エビデンスの確実性が非常に低かった (バイアスのリスクおよび非常に深刻な不精確さによりグレードダウン).この研究では,院外心停止後に救急部に搬送された成人傷病者を対象に,連続的な自動胸骨圧迫装置を用いた胸骨圧迫の効果が評価されており,気管挿管後に胸骨圧迫を中断せずに PPV を行う群と,5回の胸骨圧迫ごとに胸骨圧迫を中断して人工呼吸を1回行う (CV 比 5:1) 群とを比較していた.

退院時または 30 日後の神経学的転帰に関する調整済みデータはなかった. 重大なアウトカムである生存に関しては、気管挿管下に PPV をしながら連続した胸骨圧迫を受けた群のほうが、CV 比 5:1 で人工呼吸のたびに胸骨圧迫を中断した群と比較して、生存退院率が高く (aOR 2.43 [95%CI $1.15\sim5.12$])、ROSC の割合も高かった (aOR 1.62 [95%CI $1.07\sim2.43$]).

エビデンスから決断を導くための枠組み(EtD)

今回,推奨と提案を優れた医療慣行に関する記述に変更した理由として、タスクフォースは本トピックに関するエビデンスおよび小児における研究が存在しないことを認識している. 従来は高度な気道確保が行われた場合に限定した推奨と提案であったが、今回はその限定を外すことによって CPR の速やかな開始が促されるものと考えた. また ILCOR の BLS タスクフォースは以下の点も考慮した.

観察研究では胸骨圧迫の中断が転帰の悪化と関連していた。人工呼吸のための中断は胸骨圧迫の中断の大きな要因であり、冠動脈および大動脈の血流に悪影響を及ぼす可能性がある。胸骨圧迫中の PPV は、胸骨圧迫の質を損なうことなく同様の酸素化を達成できる可能性がある。

今回唯一含まれた研究は前後比較研究であり、患者背景や心停止の状況については調整されているものの、研究期間の前後において蘇生効率が変化した可能性は考慮されていなかった。同様のトピックに関する EMS のデータにおいても、院外心停止における患者転帰において連続した胸骨圧迫または人工呼吸を伴う CPR のいずれかの優越性を支持する質の高いのエビデンスは見つかっていない。

タスクフォースはまた、質の高い胸骨圧迫を提供し、医療者にとって蘇生手順を簡素化することメリットも考慮した。今回含まれていたクラスタークロスオーバーRCT のサブグループ解析では、30:2の CV 比は連続した胸骨圧迫と比較して実臨床では達成が困難で、遵守されないの可能性が高くなることが示唆されている。しかし、正確に 30:2で CPR が実施された場合には、非同期換気による CPR や、不確実に 30:2で実施された CPR と比較して、より良好な転帰と関連している可能性がある。

患者にとっての価値と JRC の見解

CoSTR2025 における本トピックに関する優れた医療慣行に関する記述は JRC と異なり、「院内の心停止では、CV 比を 30:2 とする CPR、あるいは連続的な胸骨圧迫を中断することなく陽圧呼吸を行う CPR(非同期 CPR)のいずれかを行う」である. ILCOR は EMS(院外心停止)に対しては「強い推奨」としている非同期 CPR を、院内心停止に関しては「優れた医療慣行に関する記述」にグレードダウンした. これはエビデンスの確実性が従来考えられてきたより低いと判断したためである. さらに、非同期 CPR を行う場合の条件としていた「高度

限定を外すことによって速やかな CPR の開始が促されるものと考えた」と述べている. JRC では高度な気道確保が行われた場合という限定を外すことの是非を中心に議論を重ねた結果、この限定を外すことが必ずしも CPR の速やかな開始を促すものではないと考えた.

な気道確保が行われた場合」という限定を解除した. その理由の一つとして ILCOR は「その

よって JRC は、救急隊員の非同期 CPR に関する見解と同様に、高度な気道確保が行われた場合には非同期 CPR を行い、それ以外には 30:2 の CV 比を用いることとした.

今後の課題

- ・院内の医療従事者が実施する連続した胸骨圧迫(人工呼吸の有無を問わない)と、人工 呼吸を伴う CPR (CV 比を問わない) の効果の比較
- ・ CPR 中に PPV の開始を遅らせることの影響
- ・ 蘇生中の受動的酸素投与の有効性
- ・ 胸骨圧迫のみの CPR または 30:2 の CV 比を遵守することが転帰に与える影響
- 小児におけるエビデンス

5. フィードバック

1) CPR の質に対するフィードバック (ScopRev 2024)

レビューの実施理由

CPR フィードバック装置は、CPR の質を改善し、患者転帰を改善することを目的としている。CPR の質に対するフィードバックに関する 2020 年の CoSTR では、CPR 中のリアルタイムフィードバックやガイダンス装置(メトロノームなどテンポやタイミングを提示する装置)は、包括的な質改善プログラムの一環として使用することが推奨された。2020 年の ILCORの SysRev では、多くの研究が質改善に関する他の介入(例:デブリーフィング)とフィードバックの評価を組み合わせていたため、レビューの対象文献から除外されるという課題があった。そのため、タスクフォースは他の介入を含む研究も対象とすることで、フィードバックの有効性に関するさらなる知見を得て既存の PICOST を改善できるかを確かめるために ScopRev を実施することにした。 またタスクフォースは、このレビューでは市民救助者ではなく、医療従事者による CPR に焦点を当てるべきだと考えた。

CQ:リアルタイムフィードバック装置やガイダンス装置は有益か?

- P: あらゆる状況において、医療従事者によって CPR が実施された成人および小児(新生児を除く)の心停止
- I: CPR の質に関するリアルタイムフィードバック装置やガイダンス装置(例:圧迫や換気の速さ・深さ)
- C:リアルタイムフィードバック装置やガイダンス装置,またはそれに類する装置なし
- 0: CPR の質に関するあらゆるアウトカムまたは指標
- S: RCT, 非無作為化試験(非 RCT, 分割時系列分析, 前後比較研究, コホート研究)を対象とした
- T: PubMed, Embase, Cochrane, Cumulative Index to Nursing and Allied Health Literature にて, 2023 年 7 月 18 日まで検索した. 非公式な出版物の検索は Google で検索した (2023 年 7 月 18 日). 英文抄録があるすべての関連文献を検索した

推奨と提案

CPRと蘇生ケアの質改善プログラムの一環として、CPR中に記録されたデータを院内でのデブリーフィングや地域メディカルコントロール協議会での事後検証、および臨床研究に活用するために、リアルタイムフィードバック装置の使用を提案する(JRC 蘇生ガイドライン2020を踏襲、弱い推奨、エビデンスの確実性:非常に低い、Grade 2D).

リアルタイムフィードバック装置を単独で、すなわち質改善プログラムとは切り離して使用しないことを提案する (JRC 蘇生ガイドライン 2020 を踏襲、弱い推奨、エビデンスの確実性: 非常に低い. Grade 2D).

エビデンスのまとめ

対象となった55件の研究は、SysRev 10件、RCT 5件、観察研究37件、症例集積研究2件、論評1件であった.対象は研究によって大きく異なっていた.小児を対象とした研究は3件のみで、そのほとんどは前後比較研究であった.

メトロノームの使用は、2014年の SysRev1 件と観察研究 6 件 (院外心停止 3 件, 院内心停止 3 件)で検討された。これらの結果は、メトロノームの使用が CPR の質の向上に関連することを示唆していたが、転帰に関するデータはほとんどなく、交絡因子については調整されていなかった。

リアルタイムフィードバック装置の効果について、他のシステム改善プログラムと組み合わせた研究も含めて幅広く調査したところ、SysRev 9件、RCT 5件、観察研究 31件、症例集積研究 2件の報告があった。フィードバック装置を使用した群は使用していない群と比較して CPR の質が向上することを示唆していた。しかし、ROSC 以上の転帰の改善を報告したほとんどの研究には、フィードバック装置の使用に加えてハイパフォーマンス CPR やデブリーフィングといった他の介入も含まれていた。これらの結果はフィードバック装置を包括的な質改善プログラムの一部として使用すべきであるという ILCOR の 2020 年の推奨と提案と一致する。

ILCOR タスクフォースの見解

ScopRev のため、文献の質に関する正式な評価は行われていない。RCT が不足しており、前回のレビュー以降に発表された研究の多くでも、依然として方法論的な問題がある(例:交絡因子の調整不足、サンプルサイズが小さい、患者転帰が報告されていないなど)。

十分な資源を備えた EMS システムや病院では、CPR の質を向上させるためにフィードバック装置の使用を含む質改善プログラムを実施している、あるいは導入を進めている。そのためフィードバック装置単独の効果を観察研究で評価することが現実的に難しくなっている。

今回の記述的レビューには 55 件の研究が含まれていたが、新たな PICOST に基づいて SysRev を行うに足る十分な新エビデンスはなかった. 既存の PICOST に基づいた SysRev の 更新が推奨されるが、その際にはフィードバック装置の違いによるサブグループを設け、医療従事者と市民救助者に分けた評価を行うことが望ましい.

今回の ScopRev ではハイパフォーマンス CPR や質改善プログラムの実施を評価した関連文献が数多くあることが明らかになったが、リアルタイムフィードバックと転帰との明らかな関連性を見いだすことはできなかった.これらのプログラムが院外心停止や院内心停止の転帰に与える影響を調べるためには、新たな PICOST の設定が望まれる.

患者にとっての価値と JRC の見解

これらのリアルタイムフィードバック装置およびガイダンス装置を用いることは CPR の質を向上させる一定の効果があると考えられる。また、わが国においてもさまざまなこれらの装置を整備した消防機関および病院が存在する。一方で、これらの装置は質の改善プログラムの一つとして使用されているため装置自体の効果を評価することは困難である。また評価されたこれらの装置はさまざまで、アウトカムを改善する質の高い重大なエビデンスに乏しい。したがってさまざまな装置に基づくサブグループを設け、さらに医療従事者、または市民救助者に対する個別の評価が待たれる。

今後の課題

- ・ 心停止の転帰を検討するために十分な検出力を備えた質の高いエビデンス
- ・ フィードバック装置と質改善プログラムの実施につながる実装科学の欠如
- ・超音波の影響を検討した研究

2) 換気のリアルタイムフィードバック装置(ScopRev 2025)

レビューの実施理由

実際の蘇生現場では、換気回数や換気量がガイドラインの推奨する範囲からしばしば逸脱しているという報告が増えている。リアルタイムで換気をモニタリングし、改善できる新しい装置が登場していることから、優先的にこのトピックが評価された。2024年のリアルタイムフィードバックに関する ScopRev では、リアルタイムフィードバック全般の検討がなされており、換気パラメーターに特化したものではなかった。

CQ:換気のリアルタイムフィードバック装置は有効か?

P:心停止(院外または院内)の成人および小児

I:換気のリアルタイムフィードバックあり (例:1回換気量,適切な換気,マスクリーク,換気回数)

C: 換気のリアルタイムフィードバックなし

0:あらゆるアウトカム

S:標準的な研究デザインに加え、査読を経ていない文献 (Google Scholar の最初の 20 ページに含まれるもの)、編集者への手紙、学会抄録も含めた

T:開始から2024年9月11日まで. 査読を経ていない文献は2024年11月4日に検索

エビデンスのまとめ

ScopRev では 19 件の関連研究が評価された(RCT 1 件, 前後比較の前向き研究 2 件, 観察研究 2 件, 症例集積研究 1 件, シミュレーション研究 13 件). シミュレーション研究のうちの 3 件は小児シナリオを評価していた.

RCT 1件および前向き観察研究 2件では、リアルタイムフィードバックの有無でアウトカムが検討された。RCTではリアルタイムフィードバックにより ROSC および 30 時間後生存率が有意に改善したが、生存退院率、80 日生存率および神経学的転帰には有意差がなかった。この研究では群間の背景を調整せず、換気の質は検討されていなかった。2件の観察研究では患者転帰に変化はなかったが、リアルタイムフィードバックにより換気パラメーターが改善した。多くのシミュレーション研究では換気の質の向上が示された。

ILCOR タスクフォースの見解

装置が医療機器として承認を受けているだけでは、実際の蘇生現場における有用性を裏付けるエビデンスにはならない. 質の高い換気には救助者や患者側の要因が影響するため、現在のエビデンスは換気のリアルタイムフィードバック装置の臨床的有効性や有用性を示すには不十分である.

ヒトを対象とした研究が少ないこと、研究結果にばらつきがあること、7件の研究で企業 が関与していることはこのエビデンスの重要な限界である.

調査された多くの研究では、マスクや高度な気道確保器具のところで測定した送気量を、「1回換気量」と誤って表記されていた。われわれは、この測定値を1回換気量ではなく送気量と表記することを提案する。なぜなら、1回換気量は呼吸サイクルごとに肺に出入りする空気の量を示すからである。

本 ScopRev の結果として、現時点でこのトピックに関して新たな SysRev を進める十分な根拠はないと判断した.

患者にとっての価値と JRC の見解

CPR において適切な換気回数と1回換気量で蘇生を行うことは重要である.しかし、実際の蘇生現場ではガイドラインが推奨する換気回数と換気量が遵守されていないことが報告されている.これらを改善するために換気のリアルタイムフィードバック装置が存在するが、この装置を評価したRCTは1件のみであり、質の高い研究は不足しているのが現状である.今後、ヒトを対象とした企業の関与のない、1回換気量と送気量の違いを考慮した質の高い前向き研究による調査が望まれる.

今後の課題

- ・装置の臨床的有効性(つまり最適条件下で機能するかどうか),または臨床的有用性(つまり実際の蘇生現場で機能するかどうか)を評価したヒトを対象とする質の高い前向き研究から得られたエビデンス(企業の関与がなく,換気パラメーターを評価した研究を含む)
- 小児に関するデータ

6. リズムチェック

1) CPR サイクルの時間 (2分 vs その他の時間) (SysRev 2025)

レビューの実施理由

このトピックは 2020 年の CoSTR で詳細に SysRev された. 2020 年以降は EvUp のみが実施されていたため、優先的に評価された.

CQ: CPR 中のリズムチェックは何分ごとに行うべきか?

P: あらゆる状況での成人と小児の心停止

I:2分以外の間隔で胸骨圧迫を中断する

C:2分ごとに胸骨圧迫を中断してリズムチェックする

0:■重大:退院時または30日後の神経学的転帰,生存退院または30日後の生存

■重要: ROSC, 冠灌流圧, 心拍出量

T: 2019年9月1日~2024年9月22日

推奨と提案

ECG を評価するために、2 分ごとに胸骨圧迫を一時中断することを提案する(弱い推奨、エビデンスの確実性:低い Grade 2C).

エビデンスのまとめ

2020年の ILCOR SysRev 以降,新たな臨床研究は確認されていない.既存のエビデンスは 2件の RCT で構成されている.

エビデンスから決断を導くための枠組み(EtD)

これらの研究は、CPRと電気ショックのどちらを先に行うかという疑問に答えることを目的に設計されており、CPRサイクルの時間に関するエビデンスは非直接的なものである.

リズムチェックのために2分ごとに胸骨圧迫を中断することを提案するにあたり、他の時間サイクルに変更する有益性を示す確実なエビデンスがないことから、以前の推奨との整合性を保つことを重視した。ILCORのBLS タスクフォースは、ガイドラインの変更には常にリスクとコストが伴うことを認識している。

患者にとっての価値と JRC の見解

わが国ではトレーニングや実際の臨床現場において2分ごとのリズムチェックが定着しており、それを変更する明確なエビデンスがないので、2分ごとに胸骨圧迫を一時中断するというJRC 蘇生ガイドライン2020の内容から変更しない.

今後の課題

- 初期心電図波形によって、リズムチェックを行う CPR の最適な間隔は異なるか
- リズムチェックに伴う無灌流時間および低灌流時間がアウトカムに及ぼす影響
- ・ 胸骨圧迫の中断を最小限に抑えるという最優先の目標に対して, リズムチェックによる 胸骨圧迫の中断が与える影響
- ・ 救助者の疲労,胸骨圧迫の質,胸骨圧迫サイクルの最適な間隔,これら3者の関係,さらにこの関係が救助者数に応じて異なるか

2) BLS 中の循環の確認 (EvUp 2023)

CQ: CPR 中の循環の確認は行うべきか?

- P: あらゆる状況下の成人および小児の心停止
- I:循環の確認のためにCPRを中断する
- C: CPR を中断しない
- 0: 退院時,30日,60日,180日,1年後の神経学的転帰,退院時,30日,60日,180日, 1年後の生存,ROSC,CCF,タイプ(介入,診断,転帰)
- S: PICO に沿った研究で、ヒトを対象としたもののみが対象. コントロール群のない研究、 ECG 評価のみ (記録または CPR 中), または循環の症候があるかどうかを確認するために 用いる他の方法 (プレシスモグラフィー、動脈圧モニター、ETCO₂、NIRS、超音波検査な

ど) は除外

T:

推奨と提案

侵襲的なモニタリングを施行中以外で、CPR を中断して脈拍の確認を行う有用性に関する 十分なデータはなかった。よって、CPR を中断して脈拍の確認を行うことへの推奨に至らな かった(JRC 蘇生ガイドライン 2020 を踏襲).

エビデンスのまとめ

2023 年の EvUp では、超音波を用いた循環の確認に関する関連論文を認めた. なおこのトピックは CoSTR2015 作成時に SysRev されており、エビデンスの詳細は JRC 蘇生ガイドライン 2015 または JRC 蘇生ガイドライン 2020 を参照のこと.

7. AED

1) 電気ショック施行前の CPR (EvUp 2023)

CQ: 電気ショック施行前の胸骨圧迫時間は, 短時間(30~60 秒) のほうが 長時間(90~180 秒) よりもアウトカムを改善するか?

- P: あらゆる状況下(院内または院外)の心停止で、CPR 開始時にショック可能なリズムを 呈した成人と小児
- Ⅰ:電気ショック施行前の長時間(90~180秒)の胸骨圧迫
- C:電気ショック施行前の短時間(30~60秒)の胸骨圧迫
- 0:退院時神経学的転帰,生存退院率,ROSC
- S: RCT と RCT 以外(非無作為化の比較試験,分割時系列解析,前後比較研究,コホート研究)を対象とした.論文化されていない研究(学会抄録,臨床試験プロトコルなど)は 除外した
- T: 英語の抄録がある, あらゆる言語, あらゆる年に出版された研究を対象とし, 文献検索 は 2019 年 10 月まで

推奨と提案

ECG をモニターされていない患者の心停止では、除細動器による ECG 解析や電気ショックの準備が整うまで、短時間の CPR を行うことを提案する (JRC 蘇生ガイドライン 2020 を踏襲、弱い推奨、エビデンスの確実性: 低い、Grade 2C).

エビデンスの評価に関する科学的コンセンサス

CoSTR2023 において新しいエビデンスは見つからなかった. なおこのトピックは CoSTR2015 および 2020 で SysRev されている. エビデンスの詳細は JRC 蘇生ガイドライン 2020 を参照のこと.

2) 成人におけるパドル/電極パッドのサイズおよび位置(SysRev 2025)

レビューの実施理由

これは BLS, PLS, ALS タスクフォースによる合同トピックである。ILCOR の推奨と提案は 2010 年に初めて発表され, 2020 年の CoSTR では ScopRev が実施された。EvUp で見つかった エビデンスおよびパッド装着位置に関するクラスターRCT の発表を受け、BLS, PLS, ALS タスクフォースが今回共同で SysRev を実施した。

CQ:電極パッドの適切な大きさや貼付位置はあるか?

P: あらゆる状況での心停止で、CPR 中にショック適応リズムがある成人および小児

I:電極パッドの特定のサイズ・向き・貼付位置

C:電極パッドの通常(現行)のサイズ・向き・貼付位置

0:■重大:退院時または30日後の神経学的転帰,生存退院または30日後の生存

■重要: ROSC, VF の停止, VF の再発

T:2024年9月22日まで

優れた医療慣行に関する記述

AED 使用者向け

成人のパッド装着においては、メーカーの AED に付属のイラストや説明に従うこと (優れた医療慣行に関する記述).

熟練した医療従事者向け

- ・成人では、装着の迅速化および胸骨圧迫の中断を最小化するため、パッドまたはパドル を前胸部と側胸部に装着する(優れた医療慣行に関する記述).この場合、一方は患者 の右鎖骨下、胸骨上部のすぐ右側に装着し、もう一方は左腋窩の尾側、中腋窩線上に装 着する.
- ・成人で前胸部と側胸部に装着できない場合,前胸部と背部にパッドを装着する(優れた 医療慣行に関する記述).この場合,一方は左前胸部(正中線と左乳頭の間)に装着す る.女性の場合は,胸骨下部の左側に装着し,できるだけ乳房を避ける.もう一方は左 肩甲骨のすぐ下,胸椎の左側に装着する.
- ・ パッドまたはパドルはできるだけ乳房を避けて装着する(優れた医療慣行に関する記述).

ベクトルチェンジに熟練した医療従事者向け

- ・成人で AED による電気ショックを 3 回行った後も VF または pVT が持続する場合には、パッド装着位置を前胸部と背部に変更することを考慮する.この場合、一方は左前胸部(正中線と左乳頭の間)に装着する.女性の場合は、胸骨下部の左側に装着し、できるだけ乳房を避ける.もう一方は左肩甲骨のすぐ下、胸椎の左側に装着する(優れた医療慣行に関する記述).
- ・この記述は、マニュアル除細動器を用いて行うベクトルチェンジおよび二重連続電気 ショックに関する治療提案を代替するものではない[第2章「成人の二次救命処置」「心 停止に対する2回の連続した電気ショック(DSED)」も参照のこと].

除細動器メーカー向け

- ・成人における最適な体外式除細動のための特定のパッドまたはパドルサイズを推奨できる十分なエビデンスはない(優れた医療慣行に関する記述).
- ・メーカーは成人用パッドまたはパドルの装着位置を前胸部-側胸部に標準化する(優れた医療慣行に関する記述).一方のパッドまたはパドルは右鎖骨下で胸骨上部のすぐ右側に、もう一方はパッドの中心が左中腋窩線上になるようにして腋窩の下に装着する.
- ・メーカーはパッドまたはパドルが皮膚と適切に接触するように明確な説明を提示する とともに、ILCORが推奨するパッドおよびパドルの位置を正確に示す図を添付する(優 れた医療慣行に関する記述).

エビデンスの評価に関する科学的コンセンサス

観察研究2件およびRCT 1件が特定された.いずれもエビデンスの確実性は非常に低かった.

パッドサイズ

重大なアウトカムや ROSC に対して,通常のサイズと異なるパッドサイズの効果を比較した研究はなかった.院外心停止を対象とした 1 件の前後比較研究では,大型パッドサイズ(113 cm²)の AED と小型パッドサイズ(65 cm²)の AED を比較したが,電気ショック成功率に差は認められなかった(86% vs 88.8%; OR 0.82 [95%CI 0.42 \sim 1.60]).院内の研究は確認されなかった.

貼付位置

初回電気ショック時の異なるパッド貼付位置を比較した RCT はなかった.

1件の前向き EMS コホート研究では、初回前胸部-背部にパッドを貼付した場合と初回前胸部-側胸部に貼付した場合とで退院時の神経学的転帰を比較したが、交絡因子を調整後は両群間に有意差は認められなかった(aOR 1.86 [95%CI 0.98 \sim 3.51]). また、生存退院率(aOR 1.55 [95%CI 0.83 \sim 2.90])および電気ショック成功(ショック後 5 秒時点での VF停止:OR 1.08 [95%CI 0.61 \sim 1.91])にも差はなかったが、前胸部-背部にパッドを貼付した場合は交絡因子を調整した後でも ROSC が高かった(aOR 2.64 [95%CI 1.50 \sim 4.65]).

難治性 VF に対するパッド貼付位置

COVID-19 パンデミックの影響で早期終了となった 1 件のクラスターRCT では、難治性 VF (前胸部-側胸部にパッドを貼付し、電気ショックと CPR を 3 サイクル行った後も持続する VF/pVT) の成人院外心停止傷病者 280 例を対象に、貼付場所の変更(前胸部 - 背部への変更)と標準の前胸部 - 側胸部貼付の継続を比較した. この RCT では前胸部 - 背部へ貼付場所を変更した群のほうが高い生存退院率がみられたが(21.7% vs 13.3%; aRR 1.71 [95% CI 1.01~2.88])、神経学的転帰には差がなかった(a0R 1.86 [95%CI 0.98~3.51]). また VF 停止が多かった(79.9% vs 67.6%; aRR 1.18 [95%CI 1.03~1.36])が、ROSC には差がなかった(35.4% vs 26.5%; aRR 1.39 [95%CI 0.97~1.99]).

院内の研究は確認されなかった.

エビデンスから決断を導くための枠組み(EtD)

小児に関する推奨と提案は PLS CoSTR セクションに記載されている. 成人に対するこれらの推奨を作成するにあたり, ILCOR のタスクフォースは以下を考慮した.

- ・ 含まれた研究にはいずれも重大なバイアスのリスクがあった. パッドサイズに関する患者転帰を報告した研究はなく,ショック抵抗性のリズムに対して使用する場合を除き, 異なる位置でパッドを貼付した場合の転帰を比較した研究もなかった. ただし,除細動器メーカーは独自のデータを保有している可能性があり,メーカーがそのデータを公開することを希望する.
- ・ 院内心停止に関する研究が存在しない場合,このエビデンスは院内心停止にも適用可能 であるが,院外心停止におけるエビデンスを非直接的に用いるためグレードダウンする 必要がある.
- ・ 胸郭インピーダンスが低いと電流が増加し、電気ショックの成功率が向上する可能性がある. 成人を対象とした観察研究では、 小サイズのパッド/パドルは大サイズのパッド/パドルに比べて胸郭インピーダンスが有意に高いことが示されている.
- ・ 難治性 VF に対する二重連続体外式電気ショックを評価した RCT の二次解析では、ベクトルチェンジによる前胸部-背部位置と VF の種類 (ショック反応性または再発性) との関係が患者転帰に及ぼす影響を検討した. その結果、前胸部-側胸部位置を継続するのと比較して前胸部-背部位置へのベクトルチェンジは、ショック反応性 VF では VF 停止、ROSC、生存において優位性がなかった. 再発性 VF では VF 停止において優れていたが、ROSC、生存には優れていなかった.
- ・一部の ALS 環境ではパドルが使用されている. しかし、パドルでは前胸部-背部位置が不可能であり、そのサイズはメーカーから提供されている標準サイズに限定される. タスクフォースは今後のパドル使用の発展を見込んでいない.
- ・ AED には、ユーザーが正しいパッド装着位置を理解できるよう図が示されている. しかし、これらの図には大きなバラツキがあり、現行のパッドに描かれている図をもとにすると、トレーニングを受けていないバイスタンダーは正確な位置にパッド装着を装着できないことがエビデンスとして示されている.

患者にとっての価値と JRC の見解

電極パッドの貼付位置は、パッドに描かれている図も含め不適切なことが多いという指摘は国内でも散見される.以上より CoSTR2025 の推奨に賛同する.

今後の課題

- ・3回までの電気ショックにおいて、パッドを現行の方法とは異なる位置に貼付した場合 の転帰
- パッドの大きさの違いが患者転帰に与える影響
- ・ 小児および院内における最適なパッドの大きさと貼付位置
- ・ パッドの大きさと位置の相互作用

3) 電極パッド貼付および電気ショック前のブラジャーの取り外し(ScopRev 2025)

レビューの実施理由

本レビューは話題性が高く、これまで包括的なレビューが実施されていなかったことから、BLS タスクフォースにより優先的に評価された.

CQ:電極パッドを貼るときや電気ショックを行うときに、ブラジャーは外さなければならないか?

- P: あらゆる状況での成人と小児の心停止
- C:ブラジャー(特に金属部品を含むもの)を外さずにパッドを貼付または電気ショックを 行った際の有害事象および転帰
- C:ブラジャーを着用しているあらゆる状況における心停止(院内および院外)
- T: 2024年9月26日まで. 灰色文献は2024年10月1日に検索 (Google Scholar にて, 上位200件の文献を対象)

優れた医療慣行に関する記述

電気ショックのためにブラジャーを外すべきかについて十分なエビデンスはない. 電極パッドは正しい位置の素肌に貼付することを優先する. 電極パッドを貼付する際, ブラジャーの位置をずらすことで正しい位置に貼付できれば, 必ずしもブラジャーを完全に外す必要はない(優れた医療慣行に関する記述).

電極パッドの貼付に影響を与えるさまざまな体型を反映したリアルなマネキンを開発する ことが望まれる(優れた医療慣行に関する記述).

ブラジャーを着用したマネキンを準備し、電極パッドの正しい位置への貼付と胸骨圧迫の中断を最小限にすることに重点を置いたトレーニングが望まれる(優れた医療慣行に関する記述).

エビデンスのまとめ

患者転帰を報告した研究はなかった.動物を対象とした研究1件およびマネキンを対象としたシミュレーション研究2件があった.

ILOCR タスクフォースの見解

2件の研究は、AEDを開発・製造している企業の従業員による学会抄録として発表された.近年の研究では、市民による CPR や電気ショックが男性に比べて女性には実施されにくい傾向があることが明らかになっている.世論調査では、市民は公共の場で女性の胸を露出させることに抵抗を感じており、不適切な身体接触や性的暴行と誤解されることへの懸念が示されている.これらの懸念はバイスタンダーが CPR や電気ショックを実施しようとする意欲に影響を及ぼし、女性への実施率が低い原因の一つである可能性がある、下着を取り外すことが必ずしも必要かどうかについては、明確な結論は得られておらず、議論の余地がある.

このテーマに関するエビデンスは非常に限られていた.対象となった3件の研究のうち、 査読を受けていたのは2件のみであった.ブラジャーを外さずに電気ショックを行った際の 傷病者の転帰や有害事象を報告した症例報告や研究は確認されなかった.

ブラジャーを装着したままでは電極パッドの装着位置が不正確になる可能性があるが、一方で常にブラジャーを外すことにすると、特にバイスタンダーが蘇生を実施する場合に電気ショックの実施が遅延する可能性がある. 現時点では、一部の AED はブラジャーについて音声や画面で説明をしていないため、その場合は電極パッドを貼付する際にブラジャーを外していない可能性がある.

女性の前胸部を完全に露出させることにはプライバシーや文化的な問題が伴うことが多い. 一部の蘇生トレーニングでは、バイスタンダーのためらいを軽減させることを目的として「ブラジャーを着けたまま」の対応を推奨する動きもある. しかし優先すべきことは、電極パッドを正確な位置に迅速に貼付することである.

現時点では、ブラジャーを着けた状態での電気ショックに関して SysRev を行うに足る十分なエビデンスが確認されなかったが、タスクフォースは、女性への AED 使用における不平等の問題を国際社会に注意喚起し、是正する必要があることを認識させるために、優れた医療慣行に関する記述を提示することとした。

患者にとっての価値と JRC の見解

バイスタンダーCPR や AED の実施率に関する男女差はわが国でも存在すると考えられており、肌を露出することへの抵抗もその一因であると思われる. 電極パッドを正しい位置に貼付しようとすれば、ほとんどの場合でブラジャーが邪魔になるという認識を広める必要があり、確実なエビデンスはないとはいうものの、優れた医療慣行に関する記述として、ブラジャーの位置に関して言及することは有意義であると考える.

今後の課題

- ・ さまざまな形や素材のブラジャーを着けているとき、各社の電極パッドを装着する際、 外す必要があるか
- ・質の高い CPR および電気ショックの実施の妨げとなる男女別の要因を把握するため、緊急通報の音声を分析することで、市民への啓発や CPR トレーニングにおける重要な注意 点が判明する可能性がある
- ・ 胸部の露出に関する市民の意識や文化的な感受性についてより深く理解する
- 8. 心停止していない傷病者に胸骨圧迫を行うことによる偶発的な傷害 (FA SysRev 2025)

CQ:心停止ではない傷病者に対して胸骨圧迫を行うと、傷病者に偶発的な傷害が発生するか?

P:病院外における,心停止でない成人および小児

I:市民救助者から胸骨圧迫を受ける

C:胸骨圧迫を受けない

0: 退院時,30日,60日,180日,1年後の神経学的転帰,偶発的な身体傷害(従来は「有害事象」と表記)(例えば,肋骨骨折,出血),偶発的な傷害のリスク(例えば,誤嚥,横紋筋融解)

T: 文献検索は 2024 年 9 月 17 日まで

推奨と提案

市民救助者が心停止を疑った場合には、偶発的な傷害を引き起こすことを恐れることなく胸骨圧迫を開始することを推奨する(強い推奨,エビデンスの確実性:非常に低い Grade 1D).

優れた医療慣行に関する記述

その他の救助者(例:医療従事者,救急隊員)が心停止を疑った場合にも,傷病者が心停止でなかった場合の偶発的な傷害を恐れることなく胸骨圧迫を開始する(優れた医療慣行に関する記述).

エビデンスの評価に関する科学的コンセンサス

前回の SysRev 以降,新しい研究が 1 件確認された.心停止ではない傷病者のうち CPR を受けた 1,031 名を含んだ合計 5 件の研究において,7名 (0.7%) が意図しない身体傷害を経験した.さらに,2名 (0.2%) に意図しない傷害のリスクがあり,24名 (2%) に胸痛や不快感などの症状があった. CPR による死亡は報告されなかったが,61名 (6%) が退院前に死亡した.対象とした研究は異質性が高すぎるため,メタアナリシスを実施することができなかった.

エビデンスから決断を導くための枠組み (EtD)

この推奨を行うにあたり、ILCOR の FA タスクフォースは、心停止ではない傷病者対して市民救助者によって開始された CPR がもたらす傷害のリスクが低い一方で、心停止の傷病者に対しては CPR が生存率の改善効果をもたらすという事実を重視した。この推奨の意図は、誰かが心停止を起こしたと判断した場合に、どのような環境であれ CPR を開始する意思のある市民救助者を強く奨励・支援することである.

対象とした研究は市民救助者に焦点を当てており、医療従事者や対応義務のある人々に焦点を当てていないが、タスクフォースは CPR を開始することの利益が有害事象を上回ると考え、非直接的なエビデンスを用いて優れた医療慣行に関する記述を作成した.

胸壁の骨折の発生率は、実際に心停止であった傷病者が CPR を受けた際の発生率よりも実質的に低かった。ただしこれは、市民救助者によって CPR が開始され、救急隊に引き継がれて CPR がすぐに中止された(ほとんどの場合 5 分未満)ことによるものかもしれない。しかし、診断のための検査は系統的に実施されていないので、過少報告の可能性は否定できない。

タスクフォースは PROGRESS Plus ツールなどの構造化された公平性評価の使用が、公平性に焦点を当てた報告を増加させる可能性について議論した. 対象となった研究では男女比はほぼ同等であった. しかし 3 件の研究では、市民救助者は傷病者と何らかの関係(家族や介護施設の職員)がある人が多く含まれていた. こうした関係性がある場合、傷害を引き起こすことへの不安が付きまとうであろうが、CPR が生存につながるのであれば、偶発的な傷害を引き起こすことへの不安はむしろ低下する傾向があるかもしれない.

患者にとっての価値と JRC の見解

今回の SysRev において,2020 年に作成された推奨と提案を変更すべき新たな知見はなく,これまでの推奨と提案を維持する.その他の救助者(例:医療従事者,救急隊員)に対しては,エビデンスが不十分ではあるが,市民救助者同様に胸骨圧迫の開始が重要であると考え,優れた医療慣行に関する記述とした.

今後の課題

- ・ 偶発的な傷害を特定し、病院退院後のフォローアップができるような堅固な方法論を用いた実態の把握
- ・ 心停止でない小児に CPR を行うことによる傷害の発生率とパターン
- ・ 研究において公平性の側面についてはほとんど報告されていない.

9. 肥満患者に対する CPR (ScopRev 2025)

レビューの実施理由

世界的に肥満の有病率が上昇しており、これらの患者への CPR の実施には特有の課題があることから、本トピックは ILCOR の BLS、ALS、PLS および EIT 合同タスクフォースにより優先的に評価された。ILCOR ではこれまでこのトピックをレビューしたことがなかった。

CQ:肥満患者に対する CPR は非肥満患者に対する CPR と手法を変えるべきか?

P: あらゆる状況での成人と小児の心停止

- I:肥満患者(各研究で定義)に対する CPR(自動胸骨圧迫装置)や ECPR(extracorporeal cardiopulmonary resuscitation)を含む
- C:比較なし、非肥満患者との比較、または肥満患者向けに工夫した CPR と標準的 CPR の比較
- 0:■重大:神経学的転帰を伴う生存退院, 生存退院
 - ■重要:ROSC, CPR の質の指標(胸骨圧迫のテンポ,圧迫の深さ,換気回数,1回換気量, ETCO₂), CPR に要する時間(人工呼吸開始までの時間,最初の胸骨圧迫開始までの時間,ショック適応リズムの場合の初回電気ショックまでの時間), CPR 手技(胸骨圧迫,電気ショック,気道管理と人工呼吸,血管確保と薬物投与), QOL および CPR 実施者のアウトカム(安全性,身体的負担)
- T: 2024年10月1日までのすべての年

優れた医療慣行に関する記述

肥満患者に対しても通常の蘇生法を用いる(優れた医療慣行に関する記述).

エビデンスのまとめ

58

関連する研究が36件あった、肥満の定義は研究によって異なっていた。

成人では、肥満と神経学的転帰、生存退院、長期生存(数か月~数年)、および ROSC との 関連には一貫性がなかった.小児を対象にした研究 2 件では、標準体重の小児患者に比べて 肥満の小児患者は神経学的転帰が悪く、生存率および ROSC 率が低かった. CPR の質の指標を報告した研究は少なく、CPR 手技や CPR 実施者に関連するアウトカムを報告した研究はなかった.

ILCOR タスクフォースの見解

本レビューの時点では肥満の普遍的な定義がなかったため、本 ScopRev では各研究における定義に基づいて「肥満」を定義した.肥満の定義には研究間で大きなばらつきがあった.成人では、肥満が転帰に及ぼす影響について矛盾したエビデンスが示された. 小児において、2 件の研究で肥満小児の神経学的転帰が悪く、生存率および ROSC 率も低いことが示唆された. 研究間にばらつきがあるため、肥満患者に対する CPR の手技をただちに変更する必要があるとは言えない.一部のエビデンスでは、肥満の成人患者において CPR の持続時間が長くなる可能性が示唆されており、人的資源や資材への影響が懸念される.

患者にとっての価値と JRC の見解

JRC として ILCOR の見解を支持する. 肥満の有病率は世界的に上昇している. しかし, わが国の肥満有病率は約4.5%で, これは米国の1/10,0ECD 諸国のなかでも最も低い水準である.

今後の課題

- ・ 乳児、小児および青年の肥満患者に対する CPR の研究が少ない
- ・蘇生研究のために標準化された肥満の定義,または年齢や性別,人種などに特異的な定義の必要性
- ・ 他の因子を考慮した上での肥満が CPR アウトカムに与える真の影響
- ・ 肥満が CPR の手技 (胸骨圧迫, 気道管理と人工呼吸, 電気ショック), CPR の質, および 治療 (血管確保と薬物投与, 自動胸骨圧迫装置や体外式膜型人工肺の使用) のタイミン グや実施に与える影響 (成人・小児ともに)
- ・ 肥満の程度が CPR の質や転帰 (QOL を含む), CPR 研究への組み入れに影響するかどうか
- ・ 肥満患者に対する CPR が実施者に与える影響 (例:身体的負荷,体位変換の負担,疲労)

10. 個人防護具

1) 個人防護具を着用した CPR (SysRev 2023)

レビューの実施理由

このトピックは、2019年のCOVID-19流行により個人防護具(personal protective Equipment: PPE)を使用する機会が増え、それによって救助者の疲労が増大し、CPRの質と傷病者のアウトカムに影響を及ぼす可能性があることから、ILCORのBLSタスクフォースは優先的に評価を行った.

CQ: PPE の着用は CPR にどのような影響を与えるか?

P: あらゆる状況での成人と小児の心停止(シミュレーションを含む)

I:PPE を着用した CPR

C: PPE を着用しない CPR

0:■重大:生存退院とROSC

■重要: CPR の質, CPR までの時間, 救助者の疲労, 集中力や器用さなど神経精神的パフォーマンス

S: RCT と非無作為化研究(非 RCT, 分割時系列解析, 前後比較研究, コホート研究)を対象とした. 論文化されていない研究(学会抄録, 臨床試験のプロトコルなど)は除外した

T: 英文抄録がある,全ての年の,あらゆる言語での研究を対象とした.文献検索は2022 年5月23日まで

推奨と提案

PPE を着用している救助者の疲労に対して細心の注意を払うことを提案する(弱い推奨,エビデンスの確実性:非常に低い Grade 2D).

エビデンスの評価に関する科学的コンセンサス

文献検索の結果、PPEの使用と非使用を比較した臨床研究が 1 件、シミュレーション研究が 1 件(RCT6 件、非 RCT4 件)あった。メタアナリシスに含まれた研究では、PPE の種類はさまざまだったが、最低でもレベル C (手袋、化学防護服、高性能フィルター付きマスク)であった。異なるタイプの PPE を比較した研究は、PPE の種類が多様すぎるため、解析対象とならなかった。

救急部門において従来の PPE(サージカルマスク,手袋,ガウン)と full PPE(全身防護服,感染防止用ブーツ,N95 マスク,電動ファン付き呼吸保護具)を比較した前後比較観察研究では、従来の PPE を着用した時に比べて、強化型 PPE 着用時は、30 日生存(aOR 0.38 [95%CI 0.07~2.10]; p=0.27),ROSC(aOR 0.79 [95%CI 0.38~1.67]; p =0.54)ともに差は認められなかった.

シミュレーションによる RCT および観察研究のメタアナリシスでは、PPE 着用の有無で CPR の質の主要な指標に差は認められなかった. 観察研究の 2 件では、PPE を着用したグループにおいて自己申告による疲労が増加したことが報告された(絶対リスク低下: 視覚的アナログスケールで 10 点中 2.7 点 [95%CI 1.4~4.0]). CPR 開始までの時間を検討したシミュレーション研究 3 件のうち、新生児を対象とした 1 件では full PPE 着用時に人工呼吸開始までの時間がわずかに延長し、成人を対象とした 2 件では PPE 着用レベルが高まるほど胸骨圧迫開始までの時間が長くなったと報告している.

エビデンスから決断を導くための枠組み(EtD)

この推奨と提案の策定において、医療従事者を感染の可能性から守ること、および蘇生時における PPE 使用に関する現行の推奨との一貫性を重視した.

胸骨圧迫は身体的疲労を伴う. PPE を着用したグループでより強い疲労感を報告した 2 件の研究では、CPR は 2 人組で実施され、胸骨圧迫の担当者は 2 分ごとに交代していた. 両研究とも PPE 着用時に CPR の質が低下すると報告しているが、本メタアナリシスでは CPR の質に影響は認められていない. この SysRev に含まれる研究は、主にマネキンを用いたシミュレーションによる研究であり、使用された PPE の種類、シナリオ設定、CPR 実施時間、

CPR の指標などに大きなばらつきがあった.そのため,これらの結果の解釈には注意が必要であり,臨床現場にそのまま一般化できるとは限らない.PPE の着用が患者転帰に与える影響を評価した臨床研究は不足している.BLS タスクフォースは,PPE 着用時には CPR サイクルを短縮するという選択肢についても検討したが,PPE 着用が CPR の質に影響を与える明確なエビデンスがなく,また CPR サイクルを短縮することによって胸骨圧迫の中断時間が延びる可能性があることから,この選択肢は推奨も提案もしないこととした.さらに,成人および小児を対象とした 2019 年の ILCOR の SysRev でも,胸骨圧迫をリズムチェックのために 2分ごと以外の間隔で胸骨圧迫を中断することは推奨も提案もされていない.

患者にとっての価値と JRC の見解

医療従事者に対する病原体の潜在的曝露を防ぐために PPE は重要な役割を果たす.新型コロナウイルス感染症 (COVID-19) によるパンデミックの影響で PPE を装着して CPR を行うことが増えたことをうけ、このトピックは CoSTR2023 で初めて検討された. 救助者が PPE を着用することが患者転帰に悪影響を与えるというエビデンスはないが、救助者は疲労を感じやすいことが明らかになっており、疲労に注意を払うことを提案することとした.

今後の課題

- ・ 実際の蘇生現場において、PPE の着用が CPR 開始までの時間や CPR の質、患者転帰に及ぼす影響
- ・ PPE の着用と CPR 継続時間および救助者の疲労との関連
- ・ 救助者の疲労を軽減するために最も適した PPE の種類, またはその使用方法に関する改良策

■5 異物による気道閉塞の解除

1. 異物による気道閉塞への対応手順

異物による気道閉塞 (FBAO) を疑った場合, 救助者はただちに大声で助けを呼ぶ. この時, 傷病者が声を出せず, 有効な咳をすることもできない時には, 救助者が 119 番通報と AED を依頼する.

傷病者が声を出せるか有効な咳ができる時には、それを続けるように促すが、乳児では液 状物による窒息が多いため側臥位にするのがよい. しかし、咳が長く続くようであれば 119 番通報をためらってはならない.

声が出ないか有効な咳ができない,あるいは当初は咳をしていてもできなくなった場合には,成人や1歳以上の小児では,まず背部叩打を行う.背部叩打で異物が除去できなかった場合は,腹部突き上げを行う.乳児(1歳未満の小児)では頭部を下げて背部叩打と胸部突き上げを組み合わせて繰り返す.乳児の傷病者では腹部突き上げは行わない.

いずれの年齢でも反応がなくなった場合には、ただちに胸骨圧迫 CPR を開始するが、まだ 119 番通報がされていない場合には、助けが来なくとも自身で通報しなければならない.

異物除去や胸骨圧迫を行っている途中で、傷病者の口腔内に異物が見えた場合は指で取り除くことを試みてもよいが、異物が見えない場合には盲目的なフィンガースイープ(指による掻き出し)を行ってはならない。医療従事者の場合はマギル鉗子を用いて異物の除去を試みてもよい。

2. 対応手順の科学的背景

異物による気道閉塞(FBAO)の解除 (EvUp 2025)

CQ:FBAOを解除するにはどのような方法が有効か?

P: あらゆる状況での成人および小児の FBAO

I:FBAOを解除するための介入(フィンガースイープ,背部叩打,腹部突き上げ,胸部突き上げ,FBAO解除用の吸引器具の使用など)

C: 介入なし

0:神経学的転帰, 生存, ROSC, FBAOの解除, 有害事象・合併症

S: RCT と RCT 以外(非無作為化の比較試験,分割時系列解析,前後比較研究,コホート研究),症例数 5以上の症例集積研究,および有害事象・合併症に関する症例報告を対象とした.論文化されていない研究(学会抄録,臨床試験プロトコルなど)および,動物,マネキン,遺体を用いた研究は除外した

T: 英語の抄録がある, あらゆる言語で出版された研究を対象とした. 文献検索は 2019 年 9 月まで. 多くの場合でアウトカムごとのバイアスには意味のある差はなかったため, バイアスはアウトカムごとではなく, 比較ごとに評価された. バイアスのリスクがアウトカム間にある場合, これを付記した

推奨と提案

FBAO を認識した目撃者は、可能な限り早期に FBAO の解除をサポートすることを提案する (JRC 蘇生ガイドライン 2020 を踏襲、弱い推奨、エビデンスの確実性:非常に低い、Grade 2D).

FBAO で有効な咳ができない成人および1歳以上の小児の傷病者では、まず背部叩打を行うことを提案する(JRC 蘇生ガイドライン 2020 を踏襲、弱い推奨、エビデンスの確実性:非常に低い、Grade 2D).

FBAO で有効な咳ができない成人および1歳以上の小児の傷病者で、背部叩打が有効でない場合は、腹部突き上げを行うことを提案する(JRC 蘇生ガイドライン 2020 を踏襲、弱い推奨、エビデンスの確実性:非常に低い、Grade 2D). 乳児(1歳未満の小児)の傷病者では腹部突き上げは行わず、背部叩打と胸部突き上げを組み合わせて繰り返し行う.

口腔内に異物が見える場合には、可能なら指で異物を取り除くことを提案する (JRC 蘇生ガイドライン 2020 を踏襲、弱い推奨、エビデンスの確実性: 非常に低い、Grade 2D).

FBAO の傷病者に対し、盲目的にフィンガースイープ(指による搔き出し)を行わないことを提案する(JRC 蘇生ガイドライン 2020 を踏襲、弱い推奨、エビデンスの確実性:非常に低い、Grade 2D).

FBAO により傷病者が意識を失った場合には、胸骨圧迫を行うことを提案する (JRC 蘇生ガイドライン 2020 を踏襲、弱い推奨、エビデンスの確実性:非常に低い、Grade 2D).

FBAO による院外心停止傷病者に対し、トレーニングを受けた医療従事者はマギル鉗子を用いた FBAO の解除を考慮することを提案する(JRC 蘇生ガイドライン 2020 を踏襲、弱い推奨、エビデンスの確実性:非常に低い、Grade 2D).

エビデンスのまとめ

2025年の EvUp では、2019年の前回の SysRev 以降、新たに 17件の文献が特定された. エビデンスによれば、どの治療を最初に実施したかにかかわらず、異物による FBAO の解除には複数の介入が必要となることが一般的である. 1件の研究では、胸部突き上げや腹部突き上げよりも背部叩打のほうが有効であるとされている. また、FBAO 解除用の吸引器具の使用は増加傾向にあるが、現時点ではこれらのデバイスに関する治療推奨は存在しない. したがって、最新の SysRev の実施が望まれる. なおこのトピックは CoSTR2019 作成時に SysRev されている. エビデンスの詳細は JRC 蘇生ガイドライン 2020を参照のこと.

患者にとっての価値と JRC の見解

詳細は JRC 蘇生ガイドライン 2020 を参照のこと.

■6 溺水による心停止

1. 海や川などにおける溺水による心停止への対応手順

わが国では年間 8,000 名以上が溺水により死亡している。その多くは 65 歳以上の高齢者で、家庭内(主に浴槽)における事故である。これはわが国に特有の問題であり、それに対する有効な対応策が待ち望まれる一方、実態としてはさまざまな事情があいまって、その転帰は非常に悪い。これに対し、海外諸国の多くにおいて溺水は海や川など自然水域で発生する事故の結果であり、かつ比較的若年者に多い。

ILCOR では、以下に示すように 2021~2025 年の CoSTR において溺水による心停止に関するトピックが数多く取り上げられた. これは主に自然水域で発生した溺水を念頭においたトピックであり、溺水者の救助と蘇生の優先順位や、溺水が呼吸原性心停止であることを踏まえたうえでのトピックである. JRC はこれを踏まえたうえで、表 3 に溺水による心停止傷病者に対する蘇生法の推奨と提案および優れた医療慣行に関する記述をまとめた.

表 3 溺水による心停止傷病者に対する蘇生法の推奨と提案および優れた医療慣行に関する記述のまとめ

内容	市民救助者	水難救助専門家 (ライフセー バー)	水難救助にあたる医療従事 者	
ボート上での蘇生	該当せず	救助者がトレーニングを受けており、安全に実行できると判断した場合、ボート上での CPR を実施してもよい.実施が困難または危険だと判断した場合は、陸上に移動後に蘇生を行う		
水面上での蘇生	該当せず	救助者がトレーニングを受けており、使用可能な装備で安全に実行できると判断し、岸までの距離を考慮して必要と判断した場合、水面上で換気のみ行う。困難または危険だと判断した場合は、 陸上に移動後に蘇生を行う		
AED の使用	まず CPR を開始し、AED が到着して使用準備が整うまで継続する. AED が使用可能であれば、速やかに使用する			
CPR の開始	CPR は胸骨圧 迫から開始する	CPR は換気から開始してもよい		
CPR の方法	全でのは、大学のでは、大学のでは、一点では、大学のでは、大学のでは、大学のでは、大学ののでは、大学ののでは、大学ののでは、大学ののでは、大学ののでは、大学ののでは、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学の	胸骨圧迫に加えて人工呼吸を行う		
換気用器具	ロ対口, または 使用する	ポケットマスクを	二次救命処置 (ALS) /小児 の救命処置 (PLS) の気道管 理に関する推奨に従う	
酸素投与	該当せず	可能な場合にはて	できるだけ高い濃度で投与する	

PAD

溺水傷病者に対しても PAD プログラムを適用することを推奨する

2. 対応手順の科学的背景

1) 水面上*もしくはボート上で行う溺水時の蘇生(SysRev 2023)

*ボートや陸上へ傷病者を引き上げるまでの間に、安全に行うための装備としてレスキューチューブやフローティング担架などを用いて行う蘇生を指す

レビューの実施理由

このトピックは 2020 年の CoSTR 作成のために ScopRev が行われており、BLS タスクフォースにより優先的に評価された.

CQ: 溺水時の蘇生はどこで開始すべきか?

- P: 溺水による成人と小児の心停止
- I:水面上やボート上で即座に蘇生を行うこと
- C: 陸上に引き上げるまで蘇生開始を遅らせること
- 0:■重大:退院時,または30日後の神経学的転帰および生存
 - ■重要:ROSC
- S: RCT と非無作為化研究(非 RCT, 分割時系列解析, 前後比較研究, コホート研究)を対象とした. 論文化されていない研究(学会抄録, 臨床試験のプロトコルなど), マネキンの研究, ナラティブレビュー(総説), 動物実験は除外した
- T: 英文抄録があり、全文の翻訳が可能であった、全ての年の、あらゆる言語による文献を対象とした. 文献検索は 2023 年 4 月 25 日まで

推奨と提案

水面上で人工呼吸のみを行う蘇生は、救助者がそのトレーニングを受けていて、安全に行うための装備が整っており、かつ陸地まで遠いために適応があると判断した場合に実施することを提案する(弱い推奨、エビデンスの確実性:非常に低い Grade 2D).

優れた医療慣行に関する記述

ボート上での CPR は、救助者がそのトレーニングを受けており、安全に実行できると判断 した場合に実施する(優れた医療慣行に関する記述).

水面上もしくはボート上で救助者が、ただちに蘇生を行うことが困難か安全でない、あるいはそうなりそうだと感じた場合、陸上に引き上げるまで蘇生開始を遅らせることが妥当である(優れた医療慣行に関する記述).

エビデンスの評価に関する科学的コンセンサス

ブラジルの沿岸地域において、水面上での蘇生について検討した後ろ向き観察研究が1件あった (r=46). ボート上での蘇生について言及している研究は見つからなかった。トレーニングを受けたライフガードによる水面上での人工呼吸のみの蘇生と、陸上に引き上げてからの蘇生開始を比較すると、良好な神経学的転帰を伴う生存は、水面上での蘇生のほうが有意に高いことが示された (52.6% vs 7.4%, RR7.1 [95%CI 1.8~28.8], また、退院生存率も水面上での蘇生群のほうが高い結果となった (52.6% vs 16.7%, RR5.7 [95%CI 2.3~14.3]).

エビデンスから決断を導くための枠組み(EtD)

低酸素血症は溺水時の心停止の主な原因である実験データと臨床データのいずれもが転帰を改善するためには早期に低酸素症状態を改善することが重要な介入であることを示している. 救助者となる可能性のある人に対し,可能な限り速やかに CPR を始められるようにトレーニングすることが重要である (たとえ水面上や水から引き上げた直後のボート内であっても). 胸骨圧迫は水面上では効果がないため,けっして試みない.

救助中の水面上での人工呼吸のみによる蘇生は、適切なトレーニング、十分な数の救助者、および浮力のある装備があれば実現可能である。シュピルマンとソアレスが達成したのと同様の生存が、オーストラリアのトレーニングされたライフガードが足が届かず浮いた状態で蘇生をした症例研究でも報告されている。溺水に関する ScopRev でも、救助者は傷病者と自分自身の身を守るために、天候や水の状態、陸地までの距離、救助用装備や浮力を持った器具、他の救助者の有無を考慮する必要がある。またトレーニングにはマネキン研究から得られた重要な知見、たとえば傷病者を意図せず再び水中に沈めてしまうリスクの回避、救助者の疲労や救助不成功の可能性への備えも含める。

ボート上での蘇生に関する優れた医療慣行に関する記述として、移動中のボートでもトレーニングを受けた救助者であれば蘇生を開始できる可能性が、観察研究やシミュレーション研究によって示されている.この推奨は「救助用ボート」での実施を想定しており、一般の人向けではない.

これらの推奨に基づいてガイドラインを作成する組織は、救助船の種類や大きさ、救助にあたる人員の数、装備やトレーニングの状況、そして水域や陸地の特性を考慮する必要がある.

水面上およびボート上での蘇生について、溺水専門家グループとBLS タスクフォースは、これらの介入の安全性と有効性を継続的に評価することの重要性を強調している。安全性や有効性のいずれか、または両方が確保できない場合には、救助者はCPR よりもまず救助を優先し、陸上に到着するまでCPR を遅らせる必要がある。

患者にとっての価値と JRC の見解

このトピックは CoSTR2010 で検討されてから、今回までエビデンスの見直しが検討されていなかった. CPR の基本は胸骨圧迫であるが、溺水など呼吸原性の心停止では人工呼吸も重要である. ボート上や陸上へ救助するまでの水面上で胸骨圧迫を行うことは、事実上不可能であり、危険かつ無益でもある. しかし酸素欠乏の状態を長引かせないよう水面上での人工呼吸を行えば、患者転帰を改善する可能性がある. ILCOR は、観察研究から「水面上で人工呼吸

のみを行う蘇生は、救助者がそのトレーニングを受けていて、安全に行うための装備が整っており、かつ陸地まで遠いために適応があると判断した場合に実施することを提案する」としている.

水面上で有効な人工呼吸を行うことは難しく、救助者にも危険が伴う. 救助者自身の身体 状況、精神状況、また水面の状況などに応じた対応が求められる. 二次被害を起こさぬよう、 救助する側も冷静な判断が必要である. よって、水面上での CPR トレーニングを受けた救助 者が安全と判断した場合に限り、人工呼吸のみを行うことが望ましい. 周囲の状況を確認・ 評価し、安全性と有効性が保たれていない場合、救助者は救助を優先し陸上に引き上げるま で CPR 開始を遅らせてもよい.

傷病者をボートや陸上に引き上げた後は、安全を確認したうえで直ちに胸骨圧迫を開始し、可能な限り人工呼吸を加えるべきである. この場合も安全性と有効性を継続的に評価することが重要である.

今後の課題

即時 CPR (例:水面上での人工呼吸やボート上での CPR) と陸上に移動してからの CPR が 傷病者転帰や CPR の質,救助者の安全に与える影響を評価するための質の高いエビデンスが 必要である.

今後のレビューやメタアナリシスを可能にするために、溺水に関するウツタイン様式、AHA が推奨する CPR の指標、COSCA (Core Outcome Set for Cardiac Arrest) など標準化されたものを用いてデータ収集を行う必要がある.

2) CPR 開始手順(AED ファースト vs CPR ファースト)(SysRev 2023)

レビューの実施理由

溺水に対する AED 使用について、ILCOR の ScopRev で取り上げられていた。BLS タスクフォースは AED の使用に関する 2 つの課題を優先したが、その 1 つが溺水による心停止において CPR と AED の使用のどちらを優先的に使用するのかであった。

CQ: 溺水時の心停止は AED ファーストか CPR ファーストか?

P: 溺水による成人と小児の心停止

I: AED を CPR 開始前に使用する

C: CPR を AED 使用前に開始する

0:■重大:退院時または30日後の神経学転帰および生存

■重要:ROSC

S: RCT と非無作為化研究(非 RCT, 分割時系列解析, 前後比較研究, コホート研究)を対象とした. 論文化されていない研究(学会抄録, 臨床試験のプロトコルなど), マネキンの研究, ナラティブレビュー, 動物実験は除外した

T: 英文抄録があり、全文の英訳が入手できた、全ての年の、あらゆる言語による文献を対象とした. 文献検索は2023年4月25日まで

優れた医療慣行に関する記述

溺水による成人および小児の心停止に対して、まず CPR を開始し、AED が使用できるようになるまで継続する(優れた医療慣行に関する記述).

AED が使用可能な場合は、溺水による成人および小児の心停止傷病者に対しても AED を使用する(優れた医療慣行に関する記述).

エビデンスの評価に関する科学的コンセンサス

PICOST に対応した研究は確認されなかった.

エビデンスから決断を導くための枠組み(EtD)

すべての原因による心停止を対象とした 2020 年 ILCOR の SysRev におけるメタアナリシスでは、電気ショック前の CPR には明確な有益性は示されなかった(エビデンスの確実性: 低い). そのため、2020 年の推奨では除細動器を準備しつつも、まずは CPR を開始するという2015 年の推奨を引き継いだ. これは新たなエビデンスが得られておらず、以前の推奨との一貫性に重きを置いたためである.

溺水という特殊な背景において、このトピックを直接検討したエビデンスは見つからなかった。CPRを優先する根拠は、溺水における心停止が低酸素を原因とする機序であること、以前のScopRevで溺水による院外心停止ではショック可能な心リズムが少ないという点に基づいている。 ただし溺水後の心停止であっても、一部の成人と小児において心原性のイベントが原因の可能性がある。

これらの理由に加え、溺水に関する 2021 年の ILCOR の ScopRev では AED による有害性のエビデンスが見つからなかったこと、AED は一般的にアウトカムの改善と関連していることから、溺水後の心停止でも CPR を開始した後に AED を使用することは妥当である。トレーニングやガイドラインでは、電気ショックを行う際に胸部の水分を取り除き、傷病者が水に浸かっていないことの重要性を強調する。

患者にとっての価値と JRC の見解

このトピックは CoSTR2020 では検討されておらず、CoSTR2023 で初めて検討された. 溺水に特化した新たなエビデンスはなかったため、一般的な心停止中の対応を適用することとした.

今後の課題

- ・ 溺水傷病者における AED 使用の有効性 (アウトカム, CPR の質, 安全性) に関する質の高いエビデンスが必要である.
- ・ 今後のレビューやメタアナリシスを可能にするために、溺水に関するウツタイン様式、AHA が推奨する CPR の指標、COSCA など標準化されたものを用いてデータ収集を行う必要がある.

3) 溺水時の蘇生手順(C-A-B vs A-B-C)(SysRev 2022)

レビューの実施理由

このトピックは 2020 年の CoSTR 作成のために ScopRev が行われており, ILCOR の BLS タスクフォースにより優先的に検討された.

CQ: 溺水時には胸骨圧迫から蘇生を始めるか、人工呼吸から蘇生を始める

か. どちらが優れているか?

- P: 溺水における成人と小児の心停止
- I:CPR を胸骨圧迫から開始する (C-A-B)
- C: CPR を人工呼吸から開始する (A-B-C)
- 0:■重大:退院時の神経学的転帰および生存退院
 - ■重要: ROSC
- S: RCT と無作為化研究(非 RCT, 分割時系列解析, 前後比較研究, コホート研究)を対とした. 論文化されていない研究(学会抄録, 臨床試験プロトコルなど)は除外した
- T: 英文抄録があり、全ての年の、あらゆる言語での研究を対象とした. 文献検索は 2021 年 10 月 16 日まで

優れた医療慣行に関する記述

市民については、溺水における成人と小児の心停止に対し、胸骨圧迫から CPR を開始する (C-A-B) (優れた医療慣行に関する記述).

水難救助にあたる医療従事者やライフセーバー等は、CPR を人工呼吸から開始(A-B-C)してもよい(優れた医療慣行に関する記述).

エビデンスの評価に関する科学的コンセンサス

730 編の抄録がレビューされ、そのうち 9 編が全文をレビューされた。溺水による心停止に対する初期蘇生の手順(人工呼吸優先または胸骨圧迫優先)を比較した研究はなかった。 タスクフォースは PICO に関連する文献および他のコンセンサスステートメントも含めて検討した結果、優れた医療慣行に関する記述を定めた。

エビデンスから決断を導くための枠組み(EtD)

通常の成人 BLS とは異なり、人工呼吸から CPR を開始することが優先されている根拠は、 溺水における心停止が低酸素を原因として発生しており、早期に人工呼吸を開始することで 低酸素状態を迅速に改善し、呼吸停止から心停止となるのを防ぐ、あるいは根本的な病態が 是正されたることによって ROSC の可能性を高めると考えられているためである.

溺水による心停止に対する CPR において、人工呼吸から開始することを支持するエビデンスは非直接的なものに限られる. 現在、溺水による心停止に対する CPR における人工呼吸の効果を明らかにするための SysRev が実施されている. ただし最近の ScopRev では、バイスタンダーCPR における人工呼吸の実施が生存率の増加と関連していることが明らかになった. また呼吸停止(心停止を含む)に陥った溺水者を対象に、陸上に救助される前に水面上

で人工呼吸が実施された群と人工呼吸が実施されなかった群を比較した後ろ向き観察研究の 1 件では,人工呼吸が実施された群において生存率(87.5% vs 25%)および良好な神経学 的転帰を伴う生存率(52.6% vs 7.4%)が高かった. 別の研究では,溺水した小児傷病者 で呼吸停止のみの場合と心停止にまで至った場合を比較すると,心停止に至った場合のほう が神経学的転帰が著しく悪かった(81% vs 0%;p<0.001).心停止に至る前の低酸素状態に対して,早期に人工呼吸を実施することで転帰が改善する可能性が示された.

市民救助者に対して胸骨圧迫から開始する CPR (C-A-B) が推奨されている理由は、迅速な蘇生開始を目的としており、市民向けトレーニングの方法と一貫性を持たせることを重視しているためである. この推奨は胸骨圧迫から CPR を開始しても人工呼吸の遅延がわずか5.7~6 秒であったマネキンの研究によって支持されている.

水難救助にあたる医療従事者やライフセーバー等に対して、溺水による成人と小児の心停止傷病者に人工呼吸から開始する CPR(A-B-C)が推奨されている理由は、早期に人工呼吸を開始することが転帰を改善する可能性があるという非直接的なエビデンスに基づいている。ただし、早期の人工呼吸が心停止後の転帰を改善させるのか、それとも呼吸停止から心停止に陥るのを防ぐことのみに効果があるかは不明である。

患者にとっての価値と JRC の見解

JRC 蘇生ガイドライン 2010 では「すべての救助者は CPR を胸骨圧迫から開始するのは合理的である (Class Ia). しかし、小児の心停止および呼吸原性の心停止 (溺水、FBAO など) において、熟練救助者が BVM など人工呼吸器具を持っている場合には、気道確保と人工呼吸から CPR を開始することは理にかなっている (Class IIa)」と記載していたが、溺水時の蘇生手順は ILOCR では CoSTR2022 で初めて検討された.

溺水という特殊な状況において、CPRを胸骨圧迫と人工呼吸のどちらから開始すべきかについて、重大なアウトカム(神経学的転帰や生存、ROSC)を比較した研究はなかった.

市民向けの CPR トレーニングでは、簡素かつ一貫性をもって教育することが勧告されており、複数の BLS 手順を教育することは困難である。そのため、水難救助にあたる医療従事者やライフセーバー等が CPR を実施する場合にのみ、人工呼吸から開始する CPR を考慮する ILCOR の見解は理にかなっていると判断した。

今後の課題

- ・ この課題を直接的に評価した研究はない.
- ・このエビデンスの不確実性を解決するためには、溺水に関するウツタイン様式で収集したデータに基づいた新たな研究が必要である.

4) 胸骨圧迫のみの CPR (SysRev 2023)

レビューの実施理由

このトピックは 2020 年の CoSTR 作成のために BLS タスクフォースが行った溺水 CPR に関する ScopRev に引き続いて優先的に評価された.

CQ: 溺水による心停止に対する胸骨圧迫のみの CPR は有効か?

P: 溺水による成人と小児の心停止

I:胸骨圧迫のみの CPR

C:人工呼吸を伴う CPR (胸骨圧迫と人工呼吸)

0:■重大:神経学的転帰での生存退院または30日後の生存,および生存退院または30日 後の生存

■重要: ROSC

S: RCT, 非無作為化研究(非 RCT, 分割時系列分析, 前後比較研究, コホート研究)を対象 とした. 論文化されていない研究(学会抄録, 臨床試験プロトコルなど), マネキン研究, ナラティブレビュー, 動物実験は除外した

T: 英文抄録がある, すべての年の, あらゆる言語での研究を対象とした. 文献検索は 2023 年4月25日まで

優れた医療慣行に関する記述

溺水後に陸に引き上げられた心停止傷病者に対して市民救助者が行う CPR は,以下のように あらゆる心停止傷病者に対する CPR と同様である (優れた医療慣行に関する記述).

- ・ 全ての心停止傷病者に対して胸骨圧迫を行う
- ・ 人工呼吸のトレーニングを受けており、それを行う技術と意思のある救助者は、全ての 心停止傷病者に対して胸骨圧迫と人工呼吸を実施する

水難救助にあたる医療従事者やライフセーバー等は,胸骨圧迫に加えて人工呼吸を行う(優れた医療慣行に関する記述).

エビデンスの評価に関する科学的コンセンサス

後ろ向き観察研究が 2 件特定されたが、いずれのアウトカムにおいてもエビデンスの確実性は非常に低かった. 両研究ともに、神経学的転帰または ROSC に関して、胸骨圧迫のみの CPR と人工呼吸を伴う CPR との間に差は認められなかった. 一方の研究では 30 日生存率に 2 群間で有意差はなかったが、もう一方の研究では,人工呼吸を伴う CPR は全集団において生存退院の増加と関連していた(aOR 1.54 [95%CI 1.01~2.36; p=0.046). さらに 5~15 歳の小児を対象にした事後のサブグループ解析では,人工呼吸を伴う CPR は胸骨圧迫のみの CPR と比較して良好な神経学的転帰の OR が有意に高かった(aOR 2.68 [95%CI 1.10~6.77]; p=0.03).

エビデンスから決断を導くための枠組み(EtD)

溺水における心停止は、主に血液中の酸素不足が原因である。したがって、CPRにおいて人工呼吸を行うことは重要である。人工呼吸を伴う CPR と胸骨圧迫のみの CPR を比較したレジストリ研究 2 件による既存のエビデンスは、バイアスのリスクが高く、エビデンスの確実性は非常に低い。目撃者は、特に見知らぬ人に対しては胸骨圧迫のみの CPR を行うことを好むという事実が認識されており、一部の地域では胸骨圧迫のみの CPR が広く知られていることも事実である。しかし、目撃者がトレーニングを受けており人工呼吸を行うことが可能な場合には、溺水に対する CPR としては、人工呼吸と胸骨圧迫を行う人工呼吸を伴う CPR を行うことが望ましい。人工呼吸が不可能な場合に限り、胸骨圧迫のみの CPR を考慮する。

患者にとっての価値と JRC の見解

典型的な溺水は呼吸原性の心停止である。その場合の CPR においては人工呼吸の重要性は高いと思われる。しかし、溺水においては人工呼吸を行うことによって患者転帰が改善するというエビデンスは現状では薄弱である。また、人工呼吸のトレーニングを受けていない救助者が人工呼吸を行うことには一定の障壁がある。これらより JRC は、特に市民が行う CPRにおいて溺水以外の CPR と同様、胸骨圧迫を必須とし、意思と技術があれば人工呼吸を加えるという ILCOR の判断に同意する。

今後の課題

- ・異なる CPR の方法が患者転帰に及ぼす影響を評価するための高い質のエビデンスが必要である. そのような研究では、傷病者の年齢(成人と小児)で層別化し、重要な交絡因子を調整する.
- ・今後のレビューやメタアナリシスを可能にするために、溺水に関するウツタイン様式、 AHA が推奨する CPR の指標、COSCA など標準化されたものを用いてデータ収集を行う必要がある.
- 5) 溺水による心停止傷病者に対する気道確保器具, 換気器具 (SysRev 2023)

レビューの実施理由

このトピックは 2020 年の CoSTR 作成のために ScopRev が行われており、BLS タスクフォースにより優先的に評価された.

CQ:溺水による心停止に対する有効な換気方法は?

- P: 溺水による成人と小児の心停止
- I:病院到着前の器具を用いた換気
- C:病院到着前の器具なしでの換気
- 0:■重大:退院時または30日後の神経学転帰および生存
 - ■重要: ROSC
- S: RCT と非無作為化研究(非 RCT, 分割時系列解析, 前後比較研究, コホート研究)を対象とした. 論文化されていない研究(学会抄録, 臨床試験のプロトコルなど), マネキン研究, ナラティブレビュー, 動物実験は除外した
- T: 英文抄録がある,全ての年の,あらゆる言語での研究を対象とした. 文献検索は 2023 年 4月 25 日まで

優れた医療慣行に関する記述

溺水後に陸に引き上げられた心停止傷病者に対して行う換気方法は、以下のようにあらゆる心停止傷病者に対する換気方法と同様である(優れた医療慣行に関する記述).

- ・ 市民が人工呼吸を行う場合には、口対口または口対鼻、あるいはポケットマスクを用いる.
- ・ 医療従事者が行う気管挿管などの気道管理については、溺水に焦点を当てたエビデンス

の確実性が低いため、一般論としての気道管理に準じ、第2章「成人の二次救命処置」 気道管理の項を参照のこと.

エビデンスの評価に関する科学的コンセンサス

PICOST の質問に答える研究は特定されなかった.

エビデンスから決断を導くための枠組み(EtD)

これらの治療の推奨を行うにあたり、溺水における気道確保器具および換気器具を比較した後ろ向き研究から以下の非直接的エビデンスが得られた.

1件の研究では、声門上気道デバイスの使用は、気管挿管と比較して生存入院が少なく ([a0R] 0.56 [95%CI 0.42 \sim 0.76])、また、バッグマスク換気と比較して生存退院が少なかった (a0R 0.40 [95%CI 0.19 \sim 0.86]). 症例報告の1件では、溺水では肺コンプライアンスの低下と気道抵抗の上昇があるため声門上気道デバイスは適さない可能性があるとしている.

小児を対象とした研究 2 件では、EMS による気管挿管はバッグマスク換気と比較して転帰が不良であった(OR 0.04 [95%CI $0.01\sim0.20$]; OR 0.25 [95%CI $0.08\sim0.83$]). しかし気管挿管を行うということは重症度が高い状況であり、気管挿管が行われたということ自体が交絡因子であるため、データの解釈には注意が必要である.

現行のBLS, ALS, PLS の推奨事項を変更することを支持するエビデンスは認められなかった. 溺水者に対して対応義務を負う非医療従事者による バッグマスク換気に関する条件付きの推奨と提案を行うにあたり、レビューグループおよび ILCOR の BLS タスクフォースは、以下の点を考慮した.

- ・ これらのグループが、まず最初に溺水者の蘇生処置を行う可能性が高いこと.
- ・ 地域によってライフガードによるバッグマスク換気が広く行われており、BVM の安全な 使用実態を保証するためにバッグマスク換気に関する勧告が必要であること.
- ・業務形態(プロフェッショナル/ボランティア),器具の入手可能性やトレーニングは国によって、また国内でも大きく異なること.
- ・ バッグマスク換気は実施が困難で、実践的なトレーニング、継続的な再トレーニング、 および技能の確認が必要であること.
- ・ BVM を扱う医療従事者は、BVM の定期的な点検およびメンテナンスを行う必要があること.

患者にとっての価値と JRC の見解

ILCOR は「溺水者への対応義務を負う者」を対象として BVM 換気を行うことを提案している。その対象者の例として挙げられているのはライフガードや BLS プロバイダーである。しかし、国内において医療器具としての BVM を用いた人工呼吸は医療従事者が行うことが原則である。(医師・看護師・救急救命士以外では、救急隊員および海上保安庁救急員の行う応急処置等の基準に BVM を用いた人工呼吸の実施が明記されている。) さらに、ILCOR が例示しているライフガードや BLS プロバイダーは、国内では明確に位置付けられていない(わが国で活躍しているライフセーバーと諸外国におけるライフガードとは、業務形態や責任範囲、資格などについて異なる点がある)。したがって、「わが国への適応」における優れた医療慣行

に関する記述のなかでは、BVM を用いた人工呼吸の実施を提案する対象者として ILCOR が例示した「BLS プロバイダー」および「ライフガード」を削除した.

今後の課題

- ・気道確保や人工呼吸の手順が、患者転帰や CPR の質に与える影響を評価するための質の 高いエビデンスが必要である.
- ・今後のレビューやメタアナリシスを可能にするために、溺水に関するウツタイン様式、 AHA が推奨する CPR の指標、COSCA など標準化されたものを用いてデータ収集を行う必要がある.

6) 溺水による心停止に対する病院到着前の酸素投与 (SysRev 2023)

レビューの実施理由

このトピックは 2020 年の CoSTR 作成のために ScopRev が行われており、今回 ILCOR の BLS タスクフォースにより優先的に評価された.

CQ: 溺水による心停止に対して病院前で酸素投与を行うのは有益か?

P: 溺水による成人と小児の心停止

I:病院到着前に酸素投与する

C:病院到着前に酸素投与しない

0:■重大:退院時または30日後の神経学的転帰および生存

■重要: ROSC

- S: RCT と非無作為化試験(非RCT,分割時系列解析,前後比較研究,コホート研究)を対象とした.論文化されていない研究(学会抄録,臨床試験のプロトコルなど),マネキンの研究,ナラティブレビュー,動物実験は除外した
- T:英文抄録があり、全文の翻訳が可能であった、全ての年の、あらゆる言語による研究を 対象とした. 文献検索は 2023 年 4 月 25 日まで

優れた医療慣行に関する記述

74

水難救助専門家および医療従事者は、溺水による成人および小児の心停止傷病者に対して、 CPR 中に可能な限り高濃度の酸素を投与する(優れた医療慣行に関する記述).

エビデンスの評価に関する科学的コンセンサス

PICOST の質問に答える研究は特定されなかった.

エビデンスから決断を導くための枠組み(EtD)

この優れた医療慣行に関する記述は、溺水による心停止の多くが血中酸素濃度の低下(すなわち低酸素血症)によるものであり、トレーニングを受けた医療従事者による酸素投与が有益である可能性が高いという理解に基づいている。また、ILCOR の溺水に関する ScopRevで評価された非直接的な観察研究では、溺水傷病者の低酸素血症は転帰を悪化させることが示唆されている。

ここで優れた医療慣行として記述した酸素投与は、溺水による心停止に対して蘇生中に行うものを指している.一方、ROSC後に病院前で行う酸素投与に関する最近の EXACT ランダム化比較試験(Reduction of Oxygen After Cardiac Arrest Trial)では、院外心停止と推定される成人の蘇生に成功した場合、病院前における特定の酸素飽和度目標値設定と、それに応じた酸素投与量の調整を支持していない.そのため、ROSC後の酸素投与についてはILCORの ALSとPLSの治療勧告に従っていただきたい.しかし、溺水後には末梢血管収縮が起こる可能性があり、酸素飽和度の信頼性が低下する可能性があることにも留意が必要である.健常者を対象とした2件のシミュレーション研究では、30分間潜水した後でも酸素飽和度の測定は可能であり、信頼性も高いことが示唆されているが、溺水傷病者におけるその信頼性に関するデータは見つからなかった.さらに最近のメタアナリシスでは、皮膚の色素が濃い人では酸素飽和度を過大評価する可能性があるとされている.

酸素療法を効果的に実施するためには、機材の導入、メンテナンス、トレーニングなど多くの費用がかかる。ライフガードが常駐するプールやビーチなど一部の遊泳施設ではすでに酸素が利用可能な場合もある。ただし補助的な酸素の使用は規制されている国もあり、低・中所得国では酸素の入手が困難なこともある。酸素療法を実施できるようにするかどうかを決定する立場にある者は、費用、規制要件、現場環境、対応義務を負う者の技能とトレーニングの必要性、ALSを行うことができる救助者が酸素を持って到着するまでの時間などを、得られるかもれないが確実ではない酸素投与の有益性と比較する必要がある。また酸素の安全な保管に関するルールが定められるべきであり、これもトレーニングの一環に含めるべきである。

患者にとっての価値と JRC の見解

わが国では、医療従事者以外による酸素投与に関しては規制があり、医療用酸素投与は原 則として医療従事者が行う場合に限られる.

今後の課題

- ・早期の酸素療法の傷病者のアウトカム,安全性,費用対効果に与える影響を評価する確 実性の高いエビデンスが必要である.
- ・ 今後のレビューやメタアナリシスを可能にするために、溺水に関するウツタイン様式、 AHA が推奨する CPR の指標、COSCA など標準化されたものを用いてデータ収集を行う必要がある.

7) 溺水傷病者への PAD プログラムの適用 (SysRev 2023)

レビューの実施理由

溺水に対する AED 使用について、ILCOR の ScopRev で取り上げられていた. BLS タスクフォースは AED の使用に関する 2 つの課題を優先したが、その一つのトピックが溺水に対する PAD プログラムであった.

CQ: 溺水による心停止に対して PAD プログラムは有効か?

P: 溺水による成人と小児の心停止

I:PADプログラムがあるC:PADプログラムがない

0:■重大:退院時, または30日後の神経学的転帰および生存

■重要: ROSC

S: RCT と無作為化研究(非 RCT, 分割時系列解析, 前後比較研究, コホート研究)を対象 とした. 論文化されていない研究(学会抄録, 臨床試験のプロトコルなど), マネキンの 研究, ナラティブレビュー, 動物実験は除外した

T: 英文抄録があり、全文の英訳が入手できた、全ての年の、あらゆる言語による研究を対象とした. 文献検索は 2023 年 4 月 25 日まで

推奨と提案

すべての院外心停止傷病者と同様に、溺水傷病者に対しても PAD プログラムを適用することを推奨する (強い推奨, エビデンスの確実性: 非常に低い).

エビデンスの評価に関する科学的コンセンサス

PICOST の質問に答える研究は特定されなかった.

エビデンスから決断を導くための枠組み(EtD)

BLS タスクフォースおよびレビューグループは、溺水が公共の場で頻繁に発生することを踏まえ、AED の設置は溺水による心停止であれ、非溺水者による心停止であれ、いずれの心停止傷病者にも利益をもたらす可能性があると考えた。ILCOR ScopRev において、溺水者への AED 使用に関連した有害事象は報告されていない。AED は適切に標識を掲示し、理想的には 地域の救急医療サービスや AED レジストリに登録しておき、院外心停止傷病者が発生した際に迅速に利用できる必要がある。また、PAD プログラムの導入には、機器の設置、トレーニング、メンテナンスにかかるコストが伴うため、リソースが限られた環境では実施が困難な場合があることを認識しておく必要がある。

患者にとっての価値と JRC の見解

一般的な PAD プログラムと同様に、溺水における PAD プログラムについても、わが国独自の事情はないため、JRC として ILCOR の見解を支持する.

今後の課題

- ・費用対効果を含めて、転帰、CPRの指標、および安全性に関して、水域環境における AED プログラムの有効性を評価する質の高いエビデンスが必要である.
- ・ 従来の PAD プログラムの対象範囲に水域環境がどの程度含まれるのか, およびこれらの 環境における費用対効果の比率は不明である.

今後のレビューやメタアナリシスを可能にするために、溺水に関するウツタイン様式、AHA が推奨する CPR の指標、COSCA など標準化されたものを用いてデータ収集を行う必要がある.

■7 2025 年未評価のトピック

1) 胸骨圧迫:人工呼吸比(CV比)

CQ:胸骨圧迫と人工呼吸の組み合わせで最適な比はいくつか?

P:成人および小児の病院外心停止

I:30:2以外のCV比

C:30:2のCV比

0:神経学的転帰,生存

S: RCT と RCT 以外(非無作為化の比較試験,分割時系列解析,前後比較研究,コホート研究)を対象とした.比較群のない研究(症例集積研究,横断研究など),およびレビューやプール解析は除外した

T:英語で出版された研究を対象とした. 文献検索は2016年1月まで

推奨と提案

心停止中の CV 比として 30:2 を提案する (JRC 蘇生ガイドライン 2020 を踏襲,弱い推奨, エビデンスの確実性:非常に低い, Grade 2D).

2) 電気ショック後の胸骨圧迫の再開

CQ:電気ショック後にリズムチェックが必要か?

P:院内・院外心停止が疑われ、CPR中に電気ショックが試みられた成人

I:電気ショック後すぐにリズムチェックを行う

C: 電気ショック後のリズムチェックを後にし、胸骨圧迫をすぐに再開する

0:神経学的転帰(退院時,1か月,6か月,1年後),生存(退院時,1か月,6か月,1年後),短期生存率(ROSC,生存入院),VFの再発,CPRの質(CCF:胸骨圧迫の割合)

S: RCT と RCT 以外(非無作為化の比較試験,分割時系列分析,前後比較研究,コホート研究)を対象とした.動物実験,基礎研究,数理的モデル,シミュレーションやマネキンを用いた研究,アウトカム・データのないリズムチェックのためのアルゴリズム研究,

論文化されていない研究(学会抄録,臨床試験プロトコルなど),およびレビューは除外した

T: 英語の抄録がある, あらゆる言語, あらゆる年に出版された研究を対象とし, 文献検索 は 2019 年 11 月まで

推奨と提案

あらゆる状況下の成人心停止患者において、電気ショック後すぐに胸骨圧迫を再開することを提案する (JRC 蘇生ガイドライン 2020 を踏襲、弱い推奨、エビデンスの確実性:非常に低い、Grade 2D).